[HTML][HTML] Machine learning for advanced energy materials

Y Liu, OC Esan, Z Pan, L An - Energy and AI, 2021 - Elsevier
The screening of advanced materials coupled with the modeling of their quantitative
structural-activity relationships has recently become one of the hot and trending topics in …

In pursuit of the exceptional: Research directions for machine learning in chemical and materials science

J Schrier, AJ Norquist, T Buonassisi… - Journal of the American …, 2023 - ACS Publications
Exceptional molecules and materials with one or more extraordinary properties are both
technologically valuable and fundamentally interesting, because they often involve new …

Structured information extraction from scientific text with large language models

J Dagdelen, A Dunn, S Lee, N Walker… - Nature …, 2024 - nature.com
Extracting structured knowledge from scientific text remains a challenging task for machine
learning models. Here, we present a simple approach to joint named entity recognition and …

Extracting accurate materials data from research papers with conversational language models and prompt engineering

MP Polak, D Morgan - Nature Communications, 2024 - nature.com
There has been a growing effort to replace manual extraction of data from research papers
with automated data extraction based on natural language processing, language models …

Autonomous experimentation systems for materials development: A community perspective

E Stach, B DeCost, AG Kusne, J Hattrick-Simpers… - Matter, 2021 - cell.com
Solutions to many of the world's problems depend upon materials research and
development. However, advanced materials can take decades to discover and decades …

Machine learning the quantum-chemical properties of metal–organic frameworks for accelerated materials discovery

AS Rosen, SM Iyer, D Ray, Z Yao, A Aspuru-Guzik… - Matter, 2021 - cell.com
The modular nature of metal–organic frameworks (MOFs) enables synthetic control over
their physical and chemical properties, but it can be difficult to know which MOFs would be …

Machine-learning interatomic potentials for materials science

Y Mishin - Acta Materialia, 2021 - Elsevier
Large-scale atomistic computer simulations of materials rely on interatomic potentials
providing computationally efficient predictions of energy and Newtonian forces. Traditional …

Roadmap on machine learning in electronic structure

HJ Kulik, T Hammerschmidt, J Schmidt, S Botti… - Electronic …, 2022 - iopscience.iop.org
In recent years, we have been witnessing a paradigm shift in computational materials
science. In fact, traditional methods, mostly developed in the second half of the XXth century …

Structured information extraction from complex scientific text with fine-tuned large language models

A Dunn, J Dagdelen, N Walker, S Lee… - arXiv preprint arXiv …, 2022 - arxiv.org
Intelligently extracting and linking complex scientific information from unstructured text is a
challenging endeavor particularly for those inexperienced with natural language processing …

Machine learning in energy storage materials

ZH Shen, HX Liu, Y Shen, JM Hu… - Interdisciplinary …, 2022 - Wiley Online Library
With its extremely strong capability of data analysis, machine learning has shown versatile
potential in the revolution of the materials research paradigm. Here, taking dielectric …