How to train your robot with deep reinforcement learning: lessons we have learned

J Ibarz, J Tan, C Finn, M Kalakrishnan… - … Journal of Robotics …, 2021 - journals.sagepub.com
Deep reinforcement learning (RL) has emerged as a promising approach for autonomously
acquiring complex behaviors from low-level sensor observations. Although a large portion of …

[HTML][HTML] A survey on learning-based robotic grasping

K Kleeberger, R Bormann, W Kraus, MF Huber - Current Robotics Reports, 2020 - Springer
Abstract Purpose of Review This review provides a comprehensive overview of machine
learning approaches for vision-based robotic grasping and manipulation. Current trends and …

Daydreamer: World models for physical robot learning

P Wu, A Escontrela, D Hafner… - … on robot learning, 2023 - proceedings.mlr.press
To solve tasks in complex environments, robots need to learn from experience. Deep
reinforcement learning is a common approach to robot learning but requires a large amount …

A survey of zero-shot generalisation in deep reinforcement learning

R Kirk, A Zhang, E Grefenstette, T Rocktäschel - Journal of Artificial …, 2023 - jair.org
The study of zero-shot generalisation (ZSG) in deep Reinforcement Learning (RL) aims to
produce RL algorithms whose policies generalise well to novel unseen situations at …

[PDF][PDF] Drive like a human: Rethinking autonomous driving with large language models

D Fu, X Li, L Wen, M Dou, P Cai… - Proceedings of the …, 2024 - openaccess.thecvf.com
In this paper, we explore the potential of using a large language model (LLM) to understand
the driving environment in a human-like manner and analyze its ability to reason, interpret …

Legged locomotion in challenging terrains using egocentric vision

A Agarwal, A Kumar, J Malik… - Conference on robot …, 2023 - proceedings.mlr.press
Animals are capable of precise and agile locomotion using vision. Replicating this ability
has been a long-standing goal in robotics. The traditional approach has been to decompose …

Generalizing to unseen domains: A survey on domain generalization

J Wang, C Lan, C Liu, Y Ouyang, T Qin… - IEEE transactions on …, 2022 - ieeexplore.ieee.org
Machine learning systems generally assume that the training and testing distributions are
the same. To this end, a key requirement is to develop models that can generalize to unseen …

Learning quadrupedal locomotion on deformable terrain

S Choi, G Ji, J Park, H Kim, J Mun, JH Lee… - Science Robotics, 2023 - science.org
Simulation-based reinforcement learning approaches are leading the next innovations in
legged robot control. However, the resulting control policies are still not applicable on soft …

Rma: Rapid motor adaptation for legged robots

A Kumar, Z Fu, D Pathak, J Malik - arXiv preprint arXiv:2107.04034, 2021 - arxiv.org
Successful real-world deployment of legged robots would require them to adapt in real-time
to unseen scenarios like changing terrains, changing payloads, wear and tear. This paper …

Learning quadrupedal locomotion over challenging terrain

J Lee, J Hwangbo, L Wellhausen, V Koltun, M Hutter - Science robotics, 2020 - science.org
Legged locomotion can extend the operational domain of robots to some of the most
challenging environments on Earth. However, conventional controllers for legged …