Graph neural network for traffic forecasting: A survey

W Jiang, J Luo - Expert systems with applications, 2022 - Elsevier
Traffic forecasting is important for the success of intelligent transportation systems. Deep
learning models, including convolution neural networks and recurrent neural networks, have …

Traffic prediction using artificial intelligence: Review of recent advances and emerging opportunities

M Shaygan, C Meese, W Li, XG Zhao… - … research part C: emerging …, 2022 - Elsevier
Traffic prediction plays a crucial role in alleviating traffic congestion which represents a
critical problem globally, resulting in negative consequences such as lost hours of additional …

Spatio-temporal graph neural networks for predictive learning in urban computing: A survey

G Jin, Y Liang, Y Fang, Z Shao, J Huang… - … on Knowledge and …, 2023 - ieeexplore.ieee.org
With recent advances in sensing technologies, a myriad of spatio-temporal data has been
generated and recorded in smart cities. Forecasting the evolution patterns of spatio-temporal …

Dynamic and multi-faceted spatio-temporal deep learning for traffic speed forecasting

L Han, B Du, L Sun, Y Fu, Y Lv, H Xiong - Proceedings of the 27th ACM …, 2021 - dl.acm.org
Dynamic Graph Neural Networks (DGNNs) have become one of the most promising
methods for traffic speed forecasting. However, when adapting DGNNs for traffic speed …

Deep learning for spatio-temporal data mining: A survey

S Wang, J Cao, SY Philip - IEEE transactions on knowledge …, 2020 - ieeexplore.ieee.org
With the fast development of various positioning techniques such as Global Position System
(GPS), mobile devices and remote sensing, spatio-temporal data has become increasingly …

Spatiotemporal multi-graph convolution network for ride-hailing demand forecasting

X Geng, Y Li, L Wang, L Zhang, Q Yang, J Ye… - Proceedings of the AAAI …, 2019 - aaai.org
Region-level demand forecasting is an essential task in ridehailing services. Accurate ride-
hailing demand forecasting can guide vehicle dispatching, improve vehicle utilization …

Dynamic graph convolutional network for long-term traffic flow prediction with reinforcement learning

H Peng, B Du, M Liu, M Liu, S Ji, S Wang, X Zhang… - Information …, 2021 - Elsevier
Exploiting deep learning techniques for traffic flow prediction has become increasingly
widespread. Most existing studies combine CNN or GCN with recurrent neural network to …

Deep learning on traffic prediction: Methods, analysis, and future directions

X Yin, G Wu, J Wei, Y Shen, H Qi… - IEEE Transactions on …, 2021 - ieeexplore.ieee.org
Traffic prediction plays an essential role in intelligent transportation system. Accurate traffic
prediction can assist route planing, guide vehicle dispatching, and mitigate traffic …

Topological graph convolutional network-based urban traffic flow and density prediction

H Qiu, Q Zheng, M Msahli, G Memmi… - IEEE transactions on …, 2020 - ieeexplore.ieee.org
With the development of modern Intelligent Transportation System (ITS), reliable and
efficient transportation information sharing becomes more and more important. Although …

Graph-based spatial-temporal convolutional network for vehicle trajectory prediction in autonomous driving

Z Sheng, Y Xu, S Xue, D Li - IEEE Transactions on Intelligent …, 2022 - ieeexplore.ieee.org
Forecasting the trajectories of neighbor vehicles is a crucial step for decision making and
motion planning of autonomous vehicles. This paper proposes a graph-based spatial …