[HTML][HTML] Li–Yau type and Souplet–Zhang type gradient estimates of a parabolic equation for the V-Laplacian

Q Chen, G Zhao - Journal of Mathematical Analysis and Applications, 2018 - Elsevier
In this paper, we study a parabolic equation concerning V-Laplacian on complete
Riemannian manifold M:(Δ V− q (x, t)−∂ t) u (x, t)= A (u (x, t)) on M×[0, T], where V is a vector …

Gradient estimates and Liouville theorems for nonlinear parabolic equations on noncompact Riemannian manifolds

X Zhu - Nonlinear Analysis: Theory, Methods & Applications, 2011 - Elsevier
Let M be a complete noncompact Riemannian manifold. In this paper, we derive a local
gradient estimate for positive solutions of the nonlinear parabolic equation (Δ−∂∂ t) u (x, t)+ …

Gradient estimate for a nonlinear heat equation on Riemannian manifolds

X Jiang - Proceedings of the American Mathematical Society, 2016 - ams.org
Gradient estimate for a nonlinear heat equation on Riemannian manifolds Page 1
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 144, Number 8 …

Gradient estimates for the elliptic and parabolic Lichnerowicz equations on compact manifolds

X Song, L Zhao - Zeitschrift für angewandte Mathematik und Physik, 2010 - Springer
Let (M, g) be a smooth compact Riemannian manifold of dimension n≥ 3. Denote\Delta_g=-
\rm div _g ∇ the Laplace–Beltrami operator. We establish some local gradient estimates for …

Some gradient estimates and Harnack inequalities for nonlinear parabolic equations on Riemannian manifolds

W Wang, P Zhang - Mathematische Nachrichten, 2017 - Wiley Online Library
In this paper, by the method of JF Li and XJ Xu (Differential Harnack inequalities on
Riemannian manifolds I: Linear heat equation, Adv. in Math., 226 (2011), 4456–4491), we …

Gradient estimates for ut= ΔF (u) on manifolds and some Liouville-type theorems

X Xu - Journal of Differential Equations, 2012 - Elsevier
In this paper, we first prove a localized Hamilton-type gradient estimate for the positive
solutions of Porous Media type equations: with F′(u)> 0, on a complete Riemannian …

Upper bounds of Hessian matrix and gradient estimates of positive solutions to the nonlinear parabolic equation along Ricci flow

W Wang - Nonlinear Analysis, 2022 - Elsevier
In the paper, we first prove a Hamilton-Souplet-Zhang type gradient estimate for a positive
solution to the nonlinear parabolic type equation∂ tu (x, t)=(Δ− q (x, t)) u (x, t)+ au (x, t) log u …

[PDF][PDF] Hamilton-type gradient estimates for a nonlinear parabolic equation on Riemannian manifolds

B Qian - Acta Mathematica Sinica. English Series, 2011 - researchgate.net
Let (M, g) be a complete noncompact Riemannian manifold. In this note, we derive a local
Hamilton-type gradient estimate for positive solution to a simple nonlinear parabolic …

Global gradient estimates for a general type of nonlinear parabolic equations

C Cavaterra, S Dipierro, Z Gao, E Valdinoci - The Journal of Geometric …, 2022 - Springer
We provide global gradient estimates for solutions to a general type of nonlinear parabolic
equations, possibly in a Riemannian geometry setting. Our result is new in comparison with …

A uniform bound for the solutions to a simple nonlinear equation on Riemannian manifolds

B Qian - Nonlinear Analysis: Theory, Methods & Applications, 2010 - Elsevier
Let M be a complete noncompact manifold with Ricci curvature bounded below. In this note,
we derive a uniform bound for the solutions to the nonlinear equation where a is a real …