A comprehensive survey of continual learning: theory, method and application

L Wang, X Zhang, H Su, J Zhu - IEEE Transactions on Pattern …, 2024 - ieeexplore.ieee.org
To cope with real-world dynamics, an intelligent system needs to incrementally acquire,
update, accumulate, and exploit knowledge throughout its lifetime. This ability, known as …

[HTML][HTML] A survey on few-shot class-incremental learning

S Tian, L Li, W Li, H Ran, X Ning, P Tiwari - Neural Networks, 2024 - Elsevier
Large deep learning models are impressive, but they struggle when real-time data is not
available. Few-shot class-incremental learning (FSCIL) poses a significant challenge for …

Forward compatible few-shot class-incremental learning

DW Zhou, FY Wang, HJ Ye, L Ma… - Proceedings of the …, 2022 - openaccess.thecvf.com
Novel classes frequently arise in our dynamically changing world, eg, new users in the
authentication system, and a machine learning model should recognize new classes without …

S-prompts learning with pre-trained transformers: An occam's razor for domain incremental learning

Y Wang, Z Huang, X Hong - Advances in Neural …, 2022 - proceedings.neurips.cc
State-of-the-art deep neural networks are still struggling to address the catastrophic
forgetting problem in continual learning. In this paper, we propose one simple paradigm …

Metafscil: A meta-learning approach for few-shot class incremental learning

Z Chi, L Gu, H Liu, Y Wang, Y Yu… - Proceedings of the …, 2022 - openaccess.thecvf.com
In this paper, we tackle the problem of few-shot class incremental learning (FSCIL). FSCIL
aims to incrementally learn new classes with only a few samples in each class. Most existing …

Constrained few-shot class-incremental learning

M Hersche, G Karunaratne… - Proceedings of the …, 2022 - openaccess.thecvf.com
Continually learning new classes from fresh data without forgetting previous knowledge of
old classes is a very challenging research problem. Moreover, it is imperative that such …

Overcoming catastrophic forgetting in incremental few-shot learning by finding flat minima

G Shi, J Chen, W Zhang, LM Zhan… - Advances in neural …, 2021 - proceedings.neurips.cc
This paper considers incremental few-shot learning, which requires a model to continually
recognize new categories with only a few examples provided. Our study shows that existing …

Representation compensation networks for continual semantic segmentation

CB Zhang, JW Xiao, X Liu, YC Chen… - Proceedings of the …, 2022 - openaccess.thecvf.com
In this work, we study the continual semantic segmentation problem, where the deep neural
networks are required to incorporate new classes continually without catastrophic forgetting …

Learning with fantasy: Semantic-aware virtual contrastive constraint for few-shot class-incremental learning

Z Song, Y Zhao, Y Shi, P Peng… - Proceedings of the …, 2023 - openaccess.thecvf.com
Few-shot class-incremental learning (FSCIL) aims at learning to classify new classes
continually from limited samples without forgetting the old classes. The mainstream …

Few-shot class-incremental learning by sampling multi-phase tasks

DW Zhou, HJ Ye, L Ma, D Xie, S Pu… - IEEE Transactions on …, 2022 - ieeexplore.ieee.org
New classes arise frequently in our ever-changing world, eg, emerging topics in social
media and new types of products in e-commerce. A model should recognize new classes …