A comprehensive survey of continual learning: theory, method and application
To cope with real-world dynamics, an intelligent system needs to incrementally acquire,
update, accumulate, and exploit knowledge throughout its lifetime. This ability, known as …
update, accumulate, and exploit knowledge throughout its lifetime. This ability, known as …
[HTML][HTML] A survey on few-shot class-incremental learning
Large deep learning models are impressive, but they struggle when real-time data is not
available. Few-shot class-incremental learning (FSCIL) poses a significant challenge for …
available. Few-shot class-incremental learning (FSCIL) poses a significant challenge for …
Forward compatible few-shot class-incremental learning
Novel classes frequently arise in our dynamically changing world, eg, new users in the
authentication system, and a machine learning model should recognize new classes without …
authentication system, and a machine learning model should recognize new classes without …
S-prompts learning with pre-trained transformers: An occam's razor for domain incremental learning
State-of-the-art deep neural networks are still struggling to address the catastrophic
forgetting problem in continual learning. In this paper, we propose one simple paradigm …
forgetting problem in continual learning. In this paper, we propose one simple paradigm …
Metafscil: A meta-learning approach for few-shot class incremental learning
In this paper, we tackle the problem of few-shot class incremental learning (FSCIL). FSCIL
aims to incrementally learn new classes with only a few samples in each class. Most existing …
aims to incrementally learn new classes with only a few samples in each class. Most existing …
Constrained few-shot class-incremental learning
M Hersche, G Karunaratne… - Proceedings of the …, 2022 - openaccess.thecvf.com
Continually learning new classes from fresh data without forgetting previous knowledge of
old classes is a very challenging research problem. Moreover, it is imperative that such …
old classes is a very challenging research problem. Moreover, it is imperative that such …
Overcoming catastrophic forgetting in incremental few-shot learning by finding flat minima
This paper considers incremental few-shot learning, which requires a model to continually
recognize new categories with only a few examples provided. Our study shows that existing …
recognize new categories with only a few examples provided. Our study shows that existing …
Representation compensation networks for continual semantic segmentation
In this work, we study the continual semantic segmentation problem, where the deep neural
networks are required to incorporate new classes continually without catastrophic forgetting …
networks are required to incorporate new classes continually without catastrophic forgetting …
Learning with fantasy: Semantic-aware virtual contrastive constraint for few-shot class-incremental learning
Few-shot class-incremental learning (FSCIL) aims at learning to classify new classes
continually from limited samples without forgetting the old classes. The mainstream …
continually from limited samples without forgetting the old classes. The mainstream …
Few-shot class-incremental learning by sampling multi-phase tasks
New classes arise frequently in our ever-changing world, eg, emerging topics in social
media and new types of products in e-commerce. A model should recognize new classes …
media and new types of products in e-commerce. A model should recognize new classes …