A survey on heterogeneous graph embedding: methods, techniques, applications and sources

X Wang, D Bo, C Shi, S Fan, Y Ye… - IEEE Transactions on …, 2022 - ieeexplore.ieee.org
Heterogeneous graphs (HGs) also known as heterogeneous information networks have
become ubiquitous in real-world scenarios; therefore, HG embedding, which aims to learn …

Domain-specific knowledge graphs: A survey

B Abu-Salih - Journal of Network and Computer Applications, 2021 - Elsevier
Abstract Knowledge Graphs (KGs) have made a qualitative leap and effected a real
revolution in knowledge representation. This is leveraged by the underlying structure of the …

Graph neural networks: foundation, frontiers and applications

L Wu, P Cui, J Pei, L Zhao, X Guo - … of the 28th ACM SIGKDD Conference …, 2022 - dl.acm.org
The field of graph neural networks (GNNs) has seen rapid and incredible strides over the
recent years. Graph neural networks, also known as deep learning on graphs, graph …

Towards unsupervised deep graph structure learning

Y Liu, Y Zheng, D Zhang, H Chen, H Peng… - Proceedings of the ACM …, 2022 - dl.acm.org
In recent years, graph neural networks (GNNs) have emerged as a successful tool in a
variety of graph-related applications. However, the performance of GNNs can be …

Heterogeneous graph attention network

X Wang, H Ji, C Shi, B Wang, Y Ye, P Cui… - The world wide web …, 2019 - dl.acm.org
Graph neural network, as a powerful graph representation technique based on deep
learning, has shown superior performance and attracted considerable research interest …

Deep learning on graphs: A survey

Z Zhang, P Cui, W Zhu - IEEE Transactions on Knowledge and …, 2020 - ieeexplore.ieee.org
Deep learning has been shown to be successful in a number of domains, ranging from
acoustics, images, to natural language processing. However, applying deep learning to the …

[图书][B] Deep learning on graphs

Y Ma, J Tang - 2021 - books.google.com
Deep learning on graphs has become one of the hottest topics in machine learning. The
book consists of four parts to best accommodate our readers with diverse backgrounds and …

Attributed graph clustering: A deep attentional embedding approach

C Wang, S Pan, R Hu, G Long, J Jiang… - arXiv preprint arXiv …, 2019 - arxiv.org
Graph clustering is a fundamental task which discovers communities or groups in networks.
Recent studies have mostly focused on developing deep learning approaches to learn a …

A comprehensive survey of graph embedding: Problems, techniques, and applications

H Cai, VW Zheng, KCC Chang - IEEE transactions on …, 2018 - ieeexplore.ieee.org
Graph is an important data representation which appears in a wide diversity of real-world
scenarios. Effective graph analytics provides users a deeper understanding of what is …

A survey on network embedding

P Cui, X Wang, J Pei, W Zhu - IEEE transactions on knowledge …, 2018 - ieeexplore.ieee.org
Network embedding assigns nodes in a network to low-dimensional representations and
effectively preserves the network structure. Recently, a significant amount of progresses …