The current and future state of AI interpretation of medical images

P Rajpurkar, MP Lungren - New England Journal of Medicine, 2023 - Mass Medical Soc
The Current and Future State of AI Interpretation of Medical Images | New England Journal of
Medicine Skip to main content The New England Journal of Medicine homepage Advanced …

Guidelines and quality criteria for artificial intelligence-based prediction models in healthcare: a scoping review

AAH de Hond, AM Leeuwenberg, L Hooft… - NPJ digital …, 2022 - nature.com
While the opportunities of ML and AI in healthcare are promising, the growth of complex data-
driven prediction models requires careful quality and applicability assessment before they …

CheckList for EvaluAtion of Radiomics research (CLEAR): a step-by-step reporting guideline for authors and reviewers endorsed by ESR and EuSoMII

B Kocak, B Baessler, S Bakas, R Cuocolo… - Insights into …, 2023 - Springer
Even though radiomics can hold great potential for supporting clinical decision-making, its
current use is mostly limited to academic research, without applications in routine clinical …

Clip-driven universal model for organ segmentation and tumor detection

J Liu, Y Zhang, JN Chen, J Xiao, Y Lu… - Proceedings of the …, 2023 - openaccess.thecvf.com
An increasing number of public datasets have shown a marked impact on automated organ
segmentation and tumor detection. However, due to the small size and partially labeled …

[HTML][HTML] Leakage and the reproducibility crisis in machine-learning-based science

S Kapoor, A Narayanan - Patterns, 2023 - cell.com
Machine-learning (ML) methods have gained prominence in the quantitative sciences.
However, there are many known methodological pitfalls, including data leakage, in ML …

External validation of deep learning algorithms for radiologic diagnosis: a systematic review

AC Yu, B Mohajer, J Eng - Radiology: Artificial Intelligence, 2022 - pubs.rsna.org
Purpose To assess generalizability of published deep learning (DL) algorithms for radiologic
diagnosis. Materials and Methods In this systematic review, the PubMed database was …

AI applications to medical images: From machine learning to deep learning

I Castiglioni, L Rundo, M Codari, G Di Leo, C Salvatore… - Physica medica, 2021 - Elsevier
Purpose Artificial intelligence (AI) models are playing an increasing role in biomedical
research and healthcare services. This review focuses on challenges points to be clarified …

Radiomics in oncology: a practical guide

JD Shur, SJ Doran, S Kumar, D Ap Dafydd… - Radiographics, 2021 - pubs.rsna.org
Radiomics refers to the extraction of mineable data from medical imaging and has been
applied within oncology to improve diagnosis, prognostication, and clinical decision support …

Common pitfalls and recommendations for using machine learning to detect and prognosticate for COVID-19 using chest radiographs and CT scans

M Roberts, D Driggs, M Thorpe, J Gilbey… - Nature Machine …, 2021 - nature.com
Abstract Machine learning methods offer great promise for fast and accurate detection and
prognostication of coronavirus disease 2019 (COVID-19) from standard-of-care chest …

[HTML][HTML] Bias in artificial intelligence algorithms and recommendations for mitigation

LH Nazer, R Zatarah, S Waldrip, JXC Ke… - PLOS Digital …, 2023 - journals.plos.org
The adoption of artificial intelligence (AI) algorithms is rapidly increasing in healthcare. Such
algorithms may be shaped by various factors such as social determinants of health that can …