Scientific machine learning through physics–informed neural networks: Where we are and what's next
Abstract Physics-Informed Neural Networks (PINN) are neural networks (NNs) that encode
model equations, like Partial Differential Equations (PDE), as a component of the neural …
model equations, like Partial Differential Equations (PDE), as a component of the neural …
Combustion machine learning: Principles, progress and prospects
Progress in combustion science and engineering has led to the generation of large amounts
of data from large-scale simulations, high-resolution experiments, and sensors. This corpus …
of data from large-scale simulations, high-resolution experiments, and sensors. This corpus …
Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators
FourCastNet, short for Fourier Forecasting Neural Network, is a global data-driven weather
forecasting model that provides accurate short to medium-range global predictions at …
forecasting model that provides accurate short to medium-range global predictions at …
ClimaX: A foundation model for weather and climate
Most state-of-the-art approaches for weather and climate modeling are based on physics-
informed numerical models of the atmosphere. These approaches aim to model the non …
informed numerical models of the atmosphere. These approaches aim to model the non …
Physics-informed neural operator for learning partial differential equations
In this article, we propose physics-informed neural operators (PINO) that combine training
data and physics constraints to learn the solution operator of a given family of parametric …
data and physics constraints to learn the solution operator of a given family of parametric …
Physics-Informed Residual Network (PIResNet) for rolling element bearing fault diagnostics
Various deep learning methodologies have recently been developed for machine condition
monitoring recently, and they have achieved impressive success in bearing fault …
monitoring recently, and they have achieved impressive success in bearing fault …
Pdebench: An extensive benchmark for scientific machine learning
M Takamoto, T Praditia, R Leiteritz… - Advances in …, 2022 - proceedings.neurips.cc
Abstract Machine learning-based modeling of physical systems has experienced increased
interest in recent years. Despite some impressive progress, there is still a lack of …
interest in recent years. Despite some impressive progress, there is still a lack of …
Big Data in Earth system science and progress towards a digital twin
The concept of a digital twin of Earth envisages the convergence of Big Earth Data with
physics-based models in an interactive computational framework that enables monitoring …
physics-based models in an interactive computational framework that enables monitoring …
Physics-informed machine learning: A survey on problems, methods and applications
Recent advances of data-driven machine learning have revolutionized fields like computer
vision, reinforcement learning, and many scientific and engineering domains. In many real …
vision, reinforcement learning, and many scientific and engineering domains. In many real …
A review of earth artificial intelligence
Z Sun, L Sandoval, R Crystal-Ornelas… - Computers & …, 2022 - Elsevier
In recent years, Earth system sciences are urgently calling for innovation on improving
accuracy, enhancing model intelligence level, scaling up operation, and reducing costs in …
accuracy, enhancing model intelligence level, scaling up operation, and reducing costs in …