Electromagnetic integral equations: Insights in conditioning and preconditioning
Integral equation formulations are a competitive strategy in computational electromagnetics
but, lamentably, are often plagued by ill-conditioning and by related numerical instabilities …
but, lamentably, are often plagued by ill-conditioning and by related numerical instabilities …
[图书][B] Function spaces and wavelets on domains
H Triebel - 2008 - books.google.com
Wavelets have emerged as an important tool in analyzing functions containing
discontinuities and sharp spikes. They were developed independently in the fields of …
discontinuities and sharp spikes. They were developed independently in the fields of …
Compression techniques for boundary integral equations---asymptotically optimal complexity estimates
Matrix compression techniques in the context of wavelet Galerkin schemes for boundary
integral equations are developed and analyzed that exhibit optimal complexity in the …
integral equations are developed and analyzed that exhibit optimal complexity in the …
Sparse second moment analysis for elliptic problems in stochastic domains
We consider the numerical solution of elliptic boundary value problems in domains with
random boundary perturbations. Assuming normal perturbations with small amplitude and …
random boundary perturbations. Assuming normal perturbations with small amplitude and …
Detection of pulse-like ground motions based on continues wavelet transform
S Yaghmaei-Sabegh - Journal of seismology, 2010 - Springer
This paper implements a quantitative approach to detect pulse-like ground motions based
on continues wavelet transform, which is able to clearly identify sudden jumps in time history …
on continues wavelet transform, which is able to clearly identify sudden jumps in time history …
Wavelet Galerkin schemes for boundary integral equations---implementation and quadrature
H Harbrecht, R Schneider - SIAM Journal on Scientific Computing, 2006 - SIAM
In the present paper we consider the fully discrete wavelet Galerkin scheme for the fast
solution of boundary integral equations in three dimensions. It produces approximate …
solution of boundary integral equations in three dimensions. It produces approximate …
New stable biorthogonal spline-wavelets on the interval
M Primbs - Results in Mathematics, 2010 - Springer
In this paper we present the construction of new stable biorthogonal spline-wavelet bases
on the interval [0, 1] for arbitrary choice of spline-degree. As starting point, we choose the …
on the interval [0, 1] for arbitrary choice of spline-degree. As starting point, we choose the …
[HTML][HTML] Samplets: Construction and scattered data compression
H Harbrecht, M Multerer - Journal of computational physics, 2022 - Elsevier
We introduce the concept of samplets by transferring the construction of Tausch-White
wavelets to scattered data. This way, we obtain a multiresolution analysis tailored to discrete …
wavelets to scattered data. This way, we obtain a multiresolution analysis tailored to discrete …
Fast methods for three-dimensional inverse obstacle scattering problems
H Harbrecht, T Hohage - The Journal of Integral Equations and Applications, 2007 - JSTOR
We study the inverse problem to reconstruct the shape of a three dimensional sound-soft
obstacle from measurements of scattered acoustic waves. To solve the forward problem we …
obstacle from measurements of scattered acoustic waves. To solve the forward problem we …
Comparison of fast boundary element methods on parametric surfaces
H Harbrecht, M Peters - Computer Methods in Applied Mechanics and …, 2013 - Elsevier
We compare fast black-box boundary element methods on parametric surfaces in R3. These
are the adaptive cross approximation, the multipole method based on interpolation, and the …
are the adaptive cross approximation, the multipole method based on interpolation, and the …