Complete dictionary recovery over the sphere I: Overview and the geometric picture

J Sun, Q Qu, J Wright - IEEE Transactions on Information …, 2016 - ieeexplore.ieee.org
We consider the problem of recovering a complete (ie, square and invertible) matrix A 0,
from Y∈ R n× p with Y= A 0 X 0, provided X 0 is sufficiently sparse. This recovery problem is …

Model-based deep learning

N Shlezinger, J Whang, YC Eldar… - Proceedings of the …, 2023 - ieeexplore.ieee.org
Signal processing, communications, and control have traditionally relied on classical
statistical modeling techniques. Such model-based methods utilize mathematical …

Non-convex optimization for machine learning

P Jain, P Kar - Foundations and Trends® in Machine …, 2017 - nowpublishers.com
A vast majority of machine learning algorithms train their models and perform inference by
solving optimization problems. In order to capture the learning and prediction problems …

A geometric analysis of phase retrieval

J Sun, Q Qu, J Wright - Foundations of Computational Mathematics, 2018 - Springer
Can we recover a complex signal from its Fourier magnitudes? More generally, given a set
of m measurements, y_k=\left| a _k^* x\right| yk= ak∗ x for k= 1, ..., mk= 1,…, m, is it possible …

Feature purification: How adversarial training performs robust deep learning

Z Allen-Zhu, Y Li - 2021 IEEE 62nd Annual Symposium on …, 2022 - ieeexplore.ieee.org
Despite the empirical success of using adversarial training to defend deep learning models
against adversarial perturbations, so far, it still remains rather unclear what the principles are …

Phase retrieval using alternating minimization

P Netrapalli, P Jain, S Sanghavi - Advances in Neural …, 2013 - proceedings.neurips.cc
Phase retrieval problems involve solving linear equations, but with missing sign (or phase,
for complex numbers) information. Over the last two decades, a popular generic empirical …

Generalized low rank models

M Udell, C Horn, R Zadeh, S Boyd - Foundations and Trends® …, 2016 - nowpublishers.com
Principal components analysis (PCA) is a well-known technique for approximating a tabular
data set by a low rank matrix. Here, we extend the idea of PCA to handle arbitrary data sets …

A statistical perspective on algorithmic leveraging

P Ma, M Mahoney, B Yu - International conference on …, 2014 - proceedings.mlr.press
One popular method for dealing with large-scale data sets is sampling. Using the empirical
statistical leverage scores as an importance sampling distribution, the method of algorithmic …

Non-convex robust PCA

P Netrapalli, N UN, S Sanghavi… - Advances in neural …, 2014 - proceedings.neurips.cc
We propose a new provable method for robust PCA, where the task is to recover a low-rank
matrix, which is corrupted with sparse perturbations. Our method consists of simple …

Sparse modeling for image and vision processing

J Mairal, F Bach, J Ponce - Foundations and Trends® in …, 2014 - nowpublishers.com
In recent years, a large amount of multi-disciplinary research has been conducted on sparse
models and their applications. In statistics and machine learning, the sparsity principle is …