Foundation models for time series analysis: A tutorial and survey

Y Liang, H Wen, Y Nie, Y Jiang, M Jin, D Song… - Proceedings of the 30th …, 2024 - dl.acm.org
Time series analysis stands as a focal point within the data mining community, serving as a
cornerstone for extracting valuable insights crucial to a myriad of real-world applications …

Long sequence time-series forecasting with deep learning: A survey

Z Chen, M Ma, T Li, H Wang, C Li - Information Fusion, 2023 - Elsevier
The development of deep learning technology has brought great improvements to the field
of time series forecasting. Short sequence time-series forecasting no longer satisfies the …

Large language models are zero-shot time series forecasters

N Gruver, M Finzi, S Qiu… - Advances in Neural …, 2024 - proceedings.neurips.cc
By encoding time series as a string of numerical digits, we can frame time series forecasting
as next-token prediction in text. Developing this approach, we find that large language …

[PDF][PDF] Timesnet: Temporal 2d-variation modeling for general time series analysis

H Wu, T Hu, Y Liu, H Zhou, J Wang, M Long - arXiv preprint arXiv …, 2022 - arxiv.org
Time series analysis is of immense importance in extensive applications, such as weather
forecasting, anomaly detection, and action recognition. This paper focuses on temporal …

One fits all: Power general time series analysis by pretrained lm

T Zhou, P Niu, L Sun, R Jin - Advances in neural …, 2023 - proceedings.neurips.cc
Although we have witnessed great success of pre-trained models in natural language
processing (NLP) and computer vision (CV), limited progress has been made for general …

Are transformers effective for time series forecasting?

A Zeng, M Chen, L Zhang, Q Xu - … of the AAAI conference on artificial …, 2023 - ojs.aaai.org
Recently, there has been a surge of Transformer-based solutions for the long-term time
series forecasting (LTSF) task. Despite the growing performance over the past few years, we …

Crossformer: Transformer utilizing cross-dimension dependency for multivariate time series forecasting

Y Zhang, J Yan - The eleventh international conference on learning …, 2023 - openreview.net
Recently many deep models have been proposed for multivariate time series (MTS)
forecasting. In particular, Transformer-based models have shown great potential because …

itransformer: Inverted transformers are effective for time series forecasting

Y Liu, T Hu, H Zhang, H Wu, S Wang, L Ma… - arXiv preprint arXiv …, 2023 - arxiv.org
The recent boom of linear forecasting models questions the ongoing passion for
architectural modifications of Transformer-based forecasters. These forecasters leverage …

Non-stationary transformers: Exploring the stationarity in time series forecasting

Y Liu, H Wu, J Wang, M Long - Advances in Neural …, 2022 - proceedings.neurips.cc
Transformers have shown great power in time series forecasting due to their global-range
modeling ability. However, their performance can degenerate terribly on non-stationary real …

Transformers in time series: A survey

Q Wen, T Zhou, C Zhang, W Chen, Z Ma, J Yan… - arXiv preprint arXiv …, 2022 - arxiv.org
Transformers have achieved superior performances in many tasks in natural language
processing and computer vision, which also triggered great interest in the time series …