A framework for dynamically meeting performance objectives on a service mesh

FS Samani, R Stadler - IEEE Transactions on Network and …, 2024 - ieeexplore.ieee.org
We present a framework for achieving end-to-end management objectives for multiple
services that concurrently execute on a service mesh. We apply reinforcement learning (RL) …

云网边端协同云控制研究进展及挑战

夏元清, 王晁, 高润泽, 詹玉峰, 孙中奇, 戴荔, 翟弟华 - 信息与控制, 2024 - xk.sia.cn
针对网络化控制系统通信与计算资源不足, 云控制系统难以完全保证复杂任务实时控制的问题,
在云控制系统研究基础上, 云网边端协同云控制利用云控制平台层, 网络传输层, 边缘控制层 …

Interless: Interference-Aware Deep Resource Prediction for Serverless Computing

R Ma, Y Zhan, T Yan, Y Xia, Y Ali - 2024 36th Chinese Control …, 2024 - ieeexplore.ieee.org
Serverless is an emerging cloud computing paradigm that allows functions to share
resources. However, function resource sharing introduces interference, which results in …

Octopus: An End-to-end Multi-DAG Scheduling Method Based on Deep Reinforcement Learning

Y Chang, H Peng, Y Zhan, Y Xia - 2024 43rd Chinese Control …, 2024 - ieeexplore.ieee.org
With the rapid growth of cloud computing, more and more vendors are deploying their
services to the cloud. Efficient job scheduling is essential for enhancing system operation …