A comprehensive survey on graph anomaly detection with deep learning
Anomalies are rare observations (eg, data records or events) that deviate significantly from
the others in the sample. Over the past few decades, research on anomaly mining has …
the others in the sample. Over the past few decades, research on anomaly mining has …
Graph neural networks for graphs with heterophily: A survey
Recent years have witnessed fast developments of graph neural networks (GNNs) that have
benefited myriads of graph analytic tasks and applications. In general, most GNNs depend …
benefited myriads of graph analytic tasks and applications. In general, most GNNs depend …
Federated learning from pre-trained models: A contrastive learning approach
Federated Learning (FL) is a machine learning paradigm that allows decentralized clients to
learn collaboratively without sharing their private data. However, excessive computation and …
learn collaboratively without sharing their private data. However, excessive computation and …
Graph self-supervised learning: A survey
Deep learning on graphs has attracted significant interests recently. However, most of the
works have focused on (semi-) supervised learning, resulting in shortcomings including …
works have focused on (semi-) supervised learning, resulting in shortcomings including …
Towards unsupervised deep graph structure learning
In recent years, graph neural networks (GNNs) have emerged as a successful tool in a
variety of graph-related applications. However, the performance of GNNs can be …
variety of graph-related applications. However, the performance of GNNs can be …
Rethinking and scaling up graph contrastive learning: An extremely efficient approach with group discrimination
Graph contrastive learning (GCL) alleviates the heavy reliance on label information for
graph representation learning (GRL) via self-supervised learning schemes. The core idea is …
graph representation learning (GRL) via self-supervised learning schemes. The core idea is …
Bond: Benchmarking unsupervised outlier node detection on static attributed graphs
Detecting which nodes in graphs are outliers is a relatively new machine learning task with
numerous applications. Despite the proliferation of algorithms developed in recent years for …
numerous applications. Despite the proliferation of algorithms developed in recent years for …
Towards self-interpretable graph-level anomaly detection
Graph-level anomaly detection (GLAD) aims to identify graphs that exhibit notable
dissimilarity compared to the majority in a collection. However, current works primarily focus …
dissimilarity compared to the majority in a collection. However, current works primarily focus …
Structure-free graph condensation: From large-scale graphs to condensed graph-free data
Graph condensation, which reduces the size of a large-scale graph by synthesizing a small-
scale condensed graph as its substitution, has immediate benefits for various graph learning …
scale condensed graph as its substitution, has immediate benefits for various graph learning …
Beyond smoothing: Unsupervised graph representation learning with edge heterophily discriminating
Unsupervised graph representation learning (UGRL) has drawn increasing research
attention and achieved promising results in several graph analytic tasks. Relying on the …
attention and achieved promising results in several graph analytic tasks. Relying on the …