Torsion-Free Lattices in Baumslag-Solitar Complexes
M Verma - arXiv preprint arXiv:2406.16196, 2024 - arxiv.org
This paper classifies the pairs of nonzero integers $(m, n) $ for which the locally compact
group of combinatorial automorphisms, Aut $(X_ {m, n}) $, contains incommensurable …
group of combinatorial automorphisms, Aut $(X_ {m, n}) $, contains incommensurable …
[PDF][PDF] Forester's lattices and small non-Leighton complexes
NS Dergacheva, AA Klyachko - arXiv preprint arXiv:2407.06680, 2024 - arxiv.org
arXiv:2407.06680v1 [math.GT] 9 Jul 2024 Page 1 arXiv:2407.06680v1 [math.GT] 9 Jul 2024 UDC
515.142.331+515.142.321+512.543.16 MSC: 57K20, 55U10, 05E45, 20F05 FORESTER’S …
515.142.331+515.142.321+512.543.16 MSC: 57K20, 55U10, 05E45, 20F05 FORESTER’S …
Solvable Baumslag-Solitar Lattices
N Caplinger - arXiv preprint arXiv:2408.13381, 2024 - arxiv.org
The solvable Baumslag Solitar groups $\text {BS}(1, n) $ each admit a canonical model
space, $ X_n $. We give a complete classification of lattices in $ G_n=\text {Isom}^+(X_n) …
space, $ X_n $. We give a complete classification of lattices in $ G_n=\text {Isom}^+(X_n) …