A review on renewable energy and electricity requirement forecasting models for smart grid and buildings

T Ahmad, H Zhang, B Yan - Sustainable Cities and Society, 2020 - Elsevier
The benefits of renewable energy are that it is sustainable and is low in environmental
pollution. Growing load requirement, global warming, and energy crisis need energy …

Innovative materials science via machine learning

C Gao, X Min, M Fang, T Tao, X Zheng… - Advanced Functional …, 2022 - Wiley Online Library
Nowadays, the research on materials science is rapidly entering a phase of data‐driven
age. Machine learning, one of the most powerful data‐driven methods, have been being …

Chaotic random spare ant colony optimization for multi-threshold image segmentation of 2D Kapur entropy

D Zhao, L Liu, F Yu, AA Heidari, M Wang… - Knowledge-Based …, 2021 - Elsevier
Although the continuous version of ant colony optimizer (ACOR) has been successfully
applied to various problems, there is room to boost its stability and improve convergence …

Application of variational mode decomposition and chaotic grey wolf optimizer with support vector regression for forecasting electric loads

Z Zhang, WC Hong - Knowledge-Based Systems, 2021 - Elsevier
Accurate electric load forecasting is critical in guaranteeing the efficiency of the load
dispatch and supply by a power system, which prevents the wasting of electricity and …

A VMD and LSTM based hybrid model of load forecasting for power grid security

L Lv, Z Wu, J Zhang, L Zhang, Z Tan… - IEEE Transactions on …, 2021 - ieeexplore.ieee.org
As the basis for the static security of the power grid, power load forecasting directly affects
the safety of grid operation, the rationality of grid planning, and the economy of supply …

Residential load forecasting based on LSTM fusing self-attention mechanism with pooling

H Zang, R Xu, L Cheng, T Ding, L Liu, Z Wei, G Sun - Energy, 2021 - Elsevier
Day-ahead residential load forecasting is crucial for electricity dispatch and demand
response in power systems. Electrical loads are characterized by volatility and uncertainty …

Ant colony optimization with horizontal and vertical crossover search: Fundamental visions for multi-threshold image segmentation

D Zhao, L Liu, F Yu, AA Heidari, M Wang… - Expert Systems with …, 2021 - Elsevier
The ant colony optimization (ACO) is the most exceptionally fundamental swarm-based
solver for realizing discrete problems. In order to make it also suitable for solving continuous …

A hybrid model for building energy consumption forecasting using long short term memory networks

N Somu, GR MR, K Ramamritham - Applied Energy, 2020 - Elsevier
Data driven building energy consumption forecasting models play a significant role in
enhancing the energy efficiency of the buildings through building energy management …

Load forecasting techniques for power system: Research challenges and survey

N Ahmad, Y Ghadi, M Adnan, M Ali - IEEE Access, 2022 - ieeexplore.ieee.org
The main and pivot part of electric companies is the load forecasting. Decision-makers and
think tank of power sectors should forecast the future need of electricity with large accuracy …

Short-term wind power forecasting using the hybrid model of improved variational mode decomposition and Correntropy Long Short-term memory neural network

J Duan, P Wang, W Ma, X Tian, S Fang, Y Cheng… - Energy, 2021 - Elsevier
Nowadays, various wind power forecasting methods have been developed to improve wind
power utilization. Most of these techniques are designed based on the mean square error …