Survey of hallucination in natural language generation

Z Ji, N Lee, R Frieske, T Yu, D Su, Y Xu, E Ishii… - ACM Computing …, 2023 - dl.acm.org
Natural Language Generation (NLG) has improved exponentially in recent years thanks to
the development of sequence-to-sequence deep learning technologies such as Transformer …

Generative adversarial networks in time series: A systematic literature review

E Brophy, Z Wang, Q She, T Ward - ACM Computing Surveys, 2023 - dl.acm.org
Generative adversarial network (GAN) studies have grown exponentially in the past few
years. Their impact has been seen mainly in the computer vision field with realistic image …

Generating diverse and natural 3d human motions from text

C Guo, S Zou, X Zuo, S Wang, W Ji… - Proceedings of the …, 2022 - openaccess.thecvf.com
Automated generation of 3D human motions from text is a challenging problem. The
generated motions are expected to be sufficiently diverse to explore the text-grounded …

Coderl: Mastering code generation through pretrained models and deep reinforcement learning

H Le, Y Wang, AD Gotmare… - Advances in Neural …, 2022 - proceedings.neurips.cc
Program synthesis or code generation aims to generate a program that satisfies a problem
specification. Recent approaches using large-scale pretrained language models (LMs) have …

Cascaded diffusion models for high fidelity image generation

J Ho, C Saharia, W Chan, DJ Fleet, M Norouzi… - Journal of Machine …, 2022 - jmlr.org
We show that cascaded diffusion models are capable of generating high fidelity images on
the class-conditional ImageNet generation benchmark, without any assistance from auxiliary …

Vectormapnet: End-to-end vectorized hd map learning

Y Liu, T Yuan, Y Wang, Y Wang… - … on Machine Learning, 2023 - proceedings.mlr.press
Autonomous driving systems require High-Definition (HD) semantic maps to navigate
around urban roads. Existing solutions approach the semantic mapping problem by offline …

A survey on neural speech synthesis

X Tan, T Qin, F Soong, TY Liu - arXiv preprint arXiv:2106.15561, 2021 - arxiv.org
Text to speech (TTS), or speech synthesis, which aims to synthesize intelligible and natural
speech given text, is a hot research topic in speech, language, and machine learning …

Autoregressive image generation using residual quantization

D Lee, C Kim, S Kim, M Cho… - Proceedings of the IEEE …, 2022 - openaccess.thecvf.com
For autoregressive (AR) modeling of high-resolution images, vector quantization (VQ)
represents an image as a sequence of discrete codes. A short sequence length is important …

Graph neural networks for natural language processing: A survey

L Wu, Y Chen, K Shen, X Guo, H Gao… - … and Trends® in …, 2023 - nowpublishers.com
Deep learning has become the dominant approach in addressing various tasks in Natural
Language Processing (NLP). Although text inputs are typically represented as a sequence …

Ai choreographer: Music conditioned 3d dance generation with aist++

R Li, S Yang, DA Ross… - Proceedings of the IEEE …, 2021 - openaccess.thecvf.com
We present AIST++, a new multi-modal dataset of 3D dance motion and music, along with
FACT, a Full-Attention Cross-modal Transformer network for generating 3D dance motion …