A denoising diffusion model for fluid field prediction

G Yang, S Sommer - arXiv preprint arXiv:2301.11661, 2023 - arxiv.org
We propose a novel denoising diffusion generative model for predicting nonlinear fluid fields
named FluidDiff. By performing a diffusion process, the model is able to learn a complex …

Data augmentation and feature selection for automatic model recommendation in computational physics

T Daniel, F Casenave, N Akkari… - Mathematical and …, 2021 - mdpi.com
Classification algorithms have recently found applications in computational physics for the
selection of numerical methods or models adapted to the environment and the state of the …

Machine learning visualization tool for exploring parameterized hydrodynamics

CF Jekel, DM Sterbentz, TM Stitt, P Mocz… - Machine Learning …, 2024 - iopscience.iop.org
We are interested in the computational study of shock hydrodynamics, ie problems involving
compressible solids, liquids, and gases that undergo large deformation. These problems are …

Data-assisted, physics-informed propagators for recurrent flows

T Lichtenegger - Physical Review Fluids, 2024 - APS
An alternative approach to simulate dynamic, recurrent flows with very large time steps is
presented. Data-driven forecasts based on the method of analogs are made employing a set …

An application of generative adversarial networks for robust inference in computational fluid dynamics

C Banerjee, C Lilian, D Reasor, E Pasiliao… - Proceedings of the …, 2021 - dl.acm.org
In this paper we propose a robust learning pipeline for inference in computational fluid
dynamics (CFD) systems in the presence of faulty sensor data. The standard methods for …

Machine learning for nonlinear model order reduction

T Daniel - 2021 - pastel.hal.science
Uncertainty quantification in computational physics requires running many simulations. For
some industrial applications, the complexity of the numerical model is incompatible with the …

[PDF][PDF] Machine learning for nonlinear model order reduction Apprentissage statistique pour la réduction de modèle non-linéaire

T DANIEL - researchgate.net
Tout d'abord, je souhaite remercier mon directeur de these David Ryckelynck et mes
encadrants Fabien Casenave et Nissrine Akkari pour l'opportunité qu'ils m'ont offerte de …