Uniform -Decoupling in for Polynomials
T Yang - The Journal of Geometric Analysis, 2021 - Springer
For each positive integer d, we prove a uniform l^ 2 l 2-decoupling inequality for the
collection of all polynomials phases of degree at most d. Our result is intimately related to …
collection of all polynomials phases of degree at most d. Our result is intimately related to …
Decoupling for mixed-homogeneous polynomials in
J Li, T Yang - Mathematische Annalen, 2022 - Springer
Decoupling for mixed-homogeneous polynomials in $${\mathbb {R}}^3$$ | Mathematische
Annalen Skip to main content SpringerLink Account Menu Find a journal Publish with us …
Annalen Skip to main content SpringerLink Account Menu Find a journal Publish with us …
decoupling for certain surfaces of finite type in
Z Li, J Zheng - arXiv preprint arXiv:2109.11998, 2021 - arxiv.org
In this article, we establish an $\ell^ 2$ decoupling inequality for the surface $$ F_4^
2:=\Big\{(\xi_1,\xi_2,\xi_1^ 4+\xi_2^ 4):(\xi_1,\xi_2)\in [0, 1]^ 2\Big\} $$ associated with the …
2:=\Big\{(\xi_1,\xi_2,\xi_1^ 4+\xi_2^ 4):(\xi_1,\xi_2)\in [0, 1]^ 2\Big\} $$ associated with the …
A Restriction Estimate for a Certain Surface of Finite Type in
In this paper, we study the restriction estimate for a certain surface of finite type in R^ 3 R 3,
and partially improve the results of Buschenhenke–Müller–Vargas (Anal PDE 10: 817–891 …
and partially improve the results of Buschenhenke–Müller–Vargas (Anal PDE 10: 817–891 …
Schr\"{o}dinger maximal estimates associated with finite type phases in
Z Li, J Zhao, T Zhao - arXiv preprint arXiv:2111.00897, 2021 - arxiv.org
In this paper, we establish Schr\"{o} dinger maximal estimates associated with the finite type
phases\begin {equation*}\phi (\xi_1,\xi_2):=\xi^ m_1+\xi^ m_2,\;(\xi_1,\xi_2)\in [0, 1]^ 2,\end …
phases\begin {equation*}\phi (\xi_1,\xi_2):=\xi^ m_1+\xi^ m_2,\;(\xi_1,\xi_2)\in [0, 1]^ 2,\end …
Two principles of decoupling
J Li, T Yang - arXiv preprint arXiv:2407.16108, 2024 - arxiv.org
We put forward a conical principle and a degeneracy locating principle of decoupling. The
former generalises the Pramanik-Seeger argument used in the proof of decoupling for the …
former generalises the Pramanik-Seeger argument used in the proof of decoupling for the …
Decoupling for finite type phases in higher dimensions
C Gao, Z Li, T Zhao, J Zheng - arXiv preprint arXiv:2202.11326, 2022 - arxiv.org
In this paper, we establish an $\ell^ 2$ decoupling inequality for the hypersurface\[\Big\{(\
xi_1,...,\xi_ {n-1},\xi_1^ m+...+\xi_ {n-1}^ m):(\xi_1,...,\xi_ {n-1})\in [0, 1]^{n-1}\Big\}\] associated …
xi_1,...,\xi_ {n-1},\xi_1^ m+...+\xi_ {n-1}^ m):(\xi_1,...,\xi_ {n-1})\in [0, 1]^{n-1}\Big\}\] associated …
Decoupling for certain degenerate surfaces in
K Shuin - arXiv preprint arXiv:2406.05056, 2024 - arxiv.org
In this article, we aim to study decoupling inequality for a specific degenerate hypersurface
in $\mathbb {R}^ 4$. Inspired by the work of Bourgain--Demeter and Li--Zheng, we consider …
in $\mathbb {R}^ 4$. Inspired by the work of Bourgain--Demeter and Li--Zheng, we consider …
affine Fourier restriction theorems for smooth surfaces in
J Li - arXiv preprint arXiv:2210.15015, 2022 - arxiv.org
We prove sharp $ L^ 2$ Fourier restriction inequalities for compact, smooth surfaces in
$\mathbb {R}^ 3$ equipped with the affine surface measure or a power thereof. The results …
$\mathbb {R}^ 3$ equipped with the affine surface measure or a power thereof. The results …
Decoupling for smooth surfaces in
J Li, T Yang - arXiv preprint arXiv:2110.08441, 2021 - arxiv.org
For each $ d\geq 0$, we prove decoupling inequalities in $\mathbb R^ 3$ for the graphs of
all bivariate polynomials of degree at most $ d $ with bounded coefficients, with the …
all bivariate polynomials of degree at most $ d $ with bounded coefficients, with the …