[图书][B] Numerical approximation methods for elliptic boundary value problems: finite and boundary elements

O Steinbach - 2007 - books.google.com
This book presents a unified theory of the Finite Element Method and the Boundary Element
Method for a numerical solution of second order elliptic boundary value problems. This …

Sparse tensor discretizations of high-dimensional parametric and stochastic PDEs

C Schwab, CJ Gittelson - Acta Numerica, 2011 - cambridge.org
Partial differential equations (PDEs) with random input data, such as random loadings and
coefficients, are reformulated as parametric, deterministic PDEs on parameter spaces of …

Compression techniques for boundary integral equations---asymptotically optimal complexity estimates

W Dahmen, H Harbrecht, R Schneider - SIAM journal on numerical analysis, 2006 - SIAM
Matrix compression techniques in the context of wavelet Galerkin schemes for boundary
integral equations are developed and analyzed that exhibit optimal complexity in the …

Development and implementation of some BEM variants—A critical review

KH Yu, AH Kadarman, H Djojodihardjo - Engineering Analysis with …, 2010 - Elsevier
Due to rapid development of boundary element method (BEM), this article explores the
evolution of BEM over the past half century. We here summarize the overall development …

A fast isogeometric BEM for the three dimensional Laplace-and Helmholtz problems

J Dölz, H Harbrecht, S Kurz, S Schöps, F Wolf - Computer Methods in …, 2018 - Elsevier
We present an indirect higher order boundary element method utilising NURBS mappings
for exact geometry representation and an interpolation-based fast multipole method for …

[图书][B] Numerische Näherungsverfahren für elliptische Randwertprobleme: Finite Elemente und Randelemente

O Steinbach - 2013 - books.google.com
Für die näherungsweise Lösung von Randwertproblemen zweiter Ordnung wird eine
einheitliche Theorie der Finiten Elemente Methode und der Randelementmethode …

Isogeometric boundary elements in electromagnetism: rigorous analysis, fast methods, and examples

J Dölz, S Kurz, S Schöps, F Wolf - SIAM Journal on Scientific Computing, 2019 - SIAM
We analyze a new approach to three-dimensional electromagnetic scattering problems via
fast isogeometric boundary element methods. Starting with an investigation of the theoretical …

Wavelet Galerkin schemes for boundary integral equations---implementation and quadrature

H Harbrecht, R Schneider - SIAM Journal on Scientific Computing, 2006 - SIAM
In the present paper we consider the fully discrete wavelet Galerkin scheme for the fast
solution of boundary integral equations in three dimensions. It produces approximate …

[HTML][HTML] Bembel: The fast isogeometric boundary element C++ library for Laplace, Helmholtz, and electric wave equation

J Dölz, H Harbrecht, S Kurz, M Multerer, S Schöps… - SoftwareX, 2020 - Elsevier
In this article, we present Bembel, the C++ library featuring higher order isogeometric
Galerkin boundary element methods for Laplace, Helmholtz, and Maxwell problems. Bembel …

Sparse finite element methods for operator equations with stochastic data

T von Petersdorff, C Schwab - Applications of Mathematics, 2006 - Springer
Abstract Let A: V→ V′ be a strongly elliptic operator on ad-dimensional manifold D
(polyhedra or boundaries of polyhedra are also allowed). An operator equation Au= f with …