A comprehensive overview of large language models

H Naveed, AU Khan, S Qiu, M Saqib, S Anwar… - arXiv preprint arXiv …, 2023 - arxiv.org
Large Language Models (LLMs) have recently demonstrated remarkable capabilities in
natural language processing tasks and beyond. This success of LLMs has led to a large …

Large language models for software engineering: A systematic literature review

X Hou, Y Zhao, Y Liu, Z Yang, K Wang, L Li… - arXiv preprint arXiv …, 2023 - arxiv.org
Large Language Models (LLMs) have significantly impacted numerous domains, notably
including Software Engineering (SE). Nevertheless, a well-rounded understanding of the …

Is your code generated by chatgpt really correct? rigorous evaluation of large language models for code generation

J Liu, CS Xia, Y Wang, L Zhang - Advances in Neural …, 2024 - proceedings.neurips.cc
Program synthesis has been long studied with recent approaches focused on directly using
the power of Large Language Models (LLMs) to generate code. Programming benchmarks …

Qwen technical report

J Bai, S Bai, Y Chu, Z Cui, K Dang, X Deng… - arXiv preprint arXiv …, 2023 - arxiv.org
Large language models (LLMs) have revolutionized the field of artificial intelligence,
enabling natural language processing tasks that were previously thought to be exclusive to …

Metamath: Bootstrap your own mathematical questions for large language models

L Yu, W Jiang, H Shi, J Yu, Z Liu, Y Zhang… - arXiv preprint arXiv …, 2023 - arxiv.org
Large language models (LLMs) have pushed the limits of natural language understanding
and exhibited excellent problem-solving ability. Despite the great success, most existing …

Wizardmath: Empowering mathematical reasoning for large language models via reinforced evol-instruct

H Luo, Q Sun, C Xu, P Zhao, J Lou, C Tao… - arXiv preprint arXiv …, 2023 - arxiv.org
Large language models (LLMs), such as GPT-4, have shown remarkable performance in
natural language processing (NLP) tasks, including challenging mathematical reasoning …

Agentbench: Evaluating llms as agents

X Liu, H Yu, H Zhang, Y Xu, X Lei, H Lai, Y Gu… - arXiv preprint arXiv …, 2023 - arxiv.org
Large Language Models (LLMs) are becoming increasingly smart and autonomous,
targeting real-world pragmatic missions beyond traditional NLP tasks. As a result, there has …

Aligning large language models with human: A survey

Y Wang, W Zhong, L Li, F Mi, X Zeng, W Huang… - arXiv preprint arXiv …, 2023 - arxiv.org
Large Language Models (LLMs) trained on extensive textual corpora have emerged as
leading solutions for a broad array of Natural Language Processing (NLP) tasks. Despite …

Octopack: Instruction tuning code large language models

N Muennighoff, Q Liu, A Zebaze, Q Zheng… - arXiv preprint arXiv …, 2023 - arxiv.org
Finetuning large language models (LLMs) on instructions leads to vast performance
improvements on natural language tasks. We apply instruction tuning using code …

The unlocking spell on base llms: Rethinking alignment via in-context learning

BY Lin, A Ravichander, X Lu, N Dziri… - The Twelfth …, 2023 - openreview.net
Alignment tuning has become the de facto standard practice for enabling base large
language models (LLMs) to serve as open-domain AI assistants. The alignment tuning …