Recent advances and applications of machine learning in experimental solid mechanics: A review
For many decades, experimental solid mechanics has played a crucial role in characterizing
and understanding the mechanical properties of natural and novel artificial materials …
and understanding the mechanical properties of natural and novel artificial materials …
Physics-informed neural network (PINN) evolution and beyond: A systematic literature review and bibliometric analysis
This research aims to study and assess state-of-the-art physics-informed neural networks
(PINNs) from different researchers' perspectives. The PRISMA framework was used for a …
(PINNs) from different researchers' perspectives. The PRISMA framework was used for a …
Transfer learning based physics-informed neural networks for solving inverse problems in engineering structures under different loading scenarios
Recently, a class of machine learning methods called physics-informed neural networks
(PINNs) has been proposed and gained prevalence in solving various scientific computing …
(PINNs) has been proposed and gained prevalence in solving various scientific computing …
A mixed formulation for physics-informed neural networks as a potential solver for engineering problems in heterogeneous domains: Comparison with finite element …
Physics informed neural networks (PINNs) are capable of finding the solution for a given
boundary value problem. Here, the training of the network is equivalent to the minimization …
boundary value problem. Here, the training of the network is equivalent to the minimization …
A physics-informed neural network technique based on a modified loss function for computational 2D and 3D solid mechanics
Despite its rapid development, Physics-Informed Neural Network (PINN)-based
computational solid mechanics is still in its infancy. In PINN, the loss function plays a critical …
computational solid mechanics is still in its infancy. In PINN, the loss function plays a critical …
Physics-guided, physics-informed, and physics-encoded neural networks in scientific computing
Recent breakthroughs in computing power have made it feasible to use machine learning
and deep learning to advance scientific computing in many fields, including fluid mechanics …
and deep learning to advance scientific computing in many fields, including fluid mechanics …
Perspective: Machine learning in experimental solid mechanics
Experimental solid mechanics is at a pivotal point where machine learning (ML) approaches
are rapidly proliferating into the discovery process due to significant advances in data …
are rapidly proliferating into the discovery process due to significant advances in data …
Efficient multiscale modeling of heterogeneous materials using deep neural networks
Material modeling using modern numerical methods accelerates the design process and
reduces the costs of developing new products. However, for multiscale modeling of …
reduces the costs of developing new products. However, for multiscale modeling of …
Physics-guided, physics-informed, and physics-encoded neural networks and operators in scientific computing: Fluid and solid mechanics
SA Faroughi, NM Pawar… - Journal of …, 2024 - asmedigitalcollection.asme.org
Advancements in computing power have recently made it possible to utilize machine
learning and deep learning to push scientific computing forward in a range of disciplines …
learning and deep learning to push scientific computing forward in a range of disciplines …
Spiking neural networks for nonlinear regression
A Henkes, JK Eshraghian… - Royal Society Open …, 2024 - royalsocietypublishing.org
Spiking neural networks (SNN), also often referred to as the third generation of neural
networks, carry the potential for a massive reduction in memory and energy consumption …
networks, carry the potential for a massive reduction in memory and energy consumption …