A review of heteroatom doped materials for advanced lithium–sulfur batteries

J Wang, WQ Han - Advanced Functional Materials, 2022 - Wiley Online Library
High theoretical capacity and high energy density make lithium sulfur (Li‐S) batteries a
competitive candidate for next‐generation energy storage systems. However, achieving the …

Engineering cooperative catalysis in Li–S batteries

J Qin, R Wang, P Xiao, D Wang - Advanced Energy Materials, 2023 - Wiley Online Library
Abstract Lithium–sulfur (Li–S) batteries are regarded to be one of the most promising next‐
generation batteries owing to the merits of high theoretical capacity and low cost. However …

Catalytic mechanism of oxygen vacancies in perovskite oxides for lithium–sulfur batteries

W Hou, P Feng, X Guo, Z Wang, Z Bai, Y Bai… - Advanced …, 2022 - Wiley Online Library
Defective materials have been demonstrated to possess adsorptive and catalytic properties
in lithium–sulfur (Li–S) batteries, which can effectively solve the problems of lithium …

Toward high-sulfur-content, high-performance lithium-sulfur batteries: Review of materials and technologies

F Zhao, J Xue, W Shao, H Yu, W Huang… - Journal of Energy …, 2023 - Elsevier
Lithium sulfur batteries (LSBs) are recognized as promising devices for developing next-
generation energy storage systems. In addition, they are attractive rechargeable battery …

Interface Engineering Toward Expedited Li2S Deposition in Lithium–Sulfur Batteries: A Critical Review

J Sun, Y Liu, L Liu, J Bi, S Wang, Z Du, H Du… - Advanced …, 2023 - Wiley Online Library
Lithium–sulfur batteries (LSBs) with superior energy density are among the most promising
candidates of next‐generation energy storage techniques. As the key step contributing to …

Host materials anchoring polysulfides in Li–S batteries reviewed

L Zhou, DL Danilov, RA Eichel… - Advanced Energy …, 2021 - Wiley Online Library
Lithium–sulfur batteries (Li–S) have become a viable alternative to future energy storage
devices. The electrochemical reaction based on lithium and sulfur promises an extraordinary …

Single nickel atoms on nitrogen‐doped graphene enabling enhanced kinetics of lithium–sulfur batteries

L Zhang, D Liu, Z Muhammad, F Wan, W Xie… - Advanced …, 2019 - Wiley Online Library
Abstract Lithium–sulfur (Li–S) batteries have arousing interest because of their high
theoretical energy density. However, they often suffer from sluggish conversion of lithium …

Applications of 2D MXenes in energy conversion and storage systems

J Pang, RG Mendes, A Bachmatiuk, L Zhao… - Chemical Society …, 2019 - pubs.rsc.org
Transition metal carbides and nitrides (MXenes), a family of two-dimensional (2D) inorganic
compounds, are materials composed of a few atomic layers of transition metal carbides …

A 3D Framework with Li3N–Li2S Solid Electrolyte Interphase and Fast Ion Transfer Channels for a Stabilized Lithium‐Metal Anode

S Ni, M Zhang, C Li, R Gao, J Sheng, X Wu… - Advanced …, 2023 - Wiley Online Library
The Li‐metal anode has been recognized as the most promising anode for its high
theoretical capacity and low reduction potential. However, the major drawbacks of Li metal …

A review on the status and challenges of electrocatalysts in lithium-sulfur batteries

J He, A Manthiram - Energy Storage Materials, 2019 - Elsevier
Abstract Lithium-sulfur (Li-S) batteries, which have a high theoretical specific capacity (1,675
mA hg− 1 of S) and a high energy density (2,600 Wh kg− 1 of S), have received a great deal …