EEG based emotion recognition: A tutorial and review

X Li, Y Zhang, P Tiwari, D Song, B Hu, M Yang… - ACM Computing …, 2022 - dl.acm.org
Emotion recognition technology through analyzing the EEG signal is currently an essential
concept in Artificial Intelligence and holds great potential in emotional health care, human …

Emotion recognition using multi-modal data and machine learning techniques: A tutorial and review

J Zhang, Z Yin, P Chen, S Nichele - Information Fusion, 2020 - Elsevier
In recent years, the rapid advances in machine learning (ML) and information fusion has
made it possible to endow machines/computers with the ability of emotion understanding …

EEG emotion recognition using fusion model of graph convolutional neural networks and LSTM

Y Yin, X Zheng, B Hu, Y Zhang, X Cui - Applied Soft Computing, 2021 - Elsevier
In recent years, graph convolutional neural networks have become research focus and
inspired new ideas for emotion recognition based on EEG. Deep learning has been widely …

Recognition of human emotions using EEG signals: A review

MM Rahman, AK Sarkar, MA Hossain… - Computers in biology …, 2021 - Elsevier
Assessment of the cognitive functions and state of clinical subjects is an important aspect of
e-health care delivery, and in the development of novel human-machine interfaces. A …

EEG emotion recognition using dynamical graph convolutional neural networks

T Song, W Zheng, P Song, Z Cui - IEEE Transactions on …, 2018 - ieeexplore.ieee.org
In this paper, a multichannel EEG emotion recognition method based on a novel dynamical
graph convolutional neural networks (DGCNN) is proposed. The basic idea of the proposed …

Emotions recognition using EEG signals: A survey

SM Alarcao, MJ Fonseca - IEEE transactions on affective …, 2017 - ieeexplore.ieee.org
Emotions have an important role in daily life, not only in human interaction, but also in
decision-making processes, and in the perception of the world around us. Due to the recent …

TC-Net: A Transformer Capsule Network for EEG-based emotion recognition

Y Wei, Y Liu, C Li, J Cheng, R Song, X Chen - Computers in biology and …, 2023 - Elsevier
Deep learning has recently achieved remarkable success in emotion recognition based on
Electroencephalogram (EEG), in which convolutional neural networks (CNNs) are the mostly …

Emotion recognition from multiband EEG signals using CapsNet

H Chao, L Dong, Y Liu, B Lu - Sensors, 2019 - mdpi.com
Emotion recognition based on multi-channel electroencephalograph (EEG) signals is
becoming increasingly attractive. However, the conventional methods ignore the spatial …

Human emotion recognition using deep belief network architecture

MM Hassan, MGR Alam, MZ Uddin, S Huda… - Information …, 2019 - Elsevier
Recently, deep learning methodologies have become popular to analyse physiological
signals in multiple modalities via hierarchical architectures for human emotion recognition …

Feature extraction and selection for emotion recognition from EEG

R Jenke, A Peer, M Buss - IEEE Transactions on Affective …, 2014 - ieeexplore.ieee.org
Emotion recognition from EEG signals allows the direct assessment of the “inner” state of a
user, which is considered an important factor in human-machine-interaction. Many methods …