Explainable deep reinforcement learning: state of the art and challenges

GA Vouros - ACM Computing Surveys, 2022 - dl.acm.org
Interpretability, explainability, and transparency are key issues to introducing artificial
intelligence methods in many critical domains. This is important due to ethical concerns and …

Explainable reinforcement learning: A survey and comparative review

S Milani, N Topin, M Veloso, F Fang - ACM Computing Surveys, 2024 - dl.acm.org
Explainable reinforcement learning (XRL) is an emerging subfield of explainable machine
learning that has attracted considerable attention in recent years. The goal of XRL is to …

Interpretable machine learning: Fundamental principles and 10 grand challenges

C Rudin, C Chen, Z Chen, H Huang… - Statistic …, 2022 - projecteuclid.org
Interpretability in machine learning (ML) is crucial for high stakes decisions and
troubleshooting. In this work, we provide fundamental principles for interpretable ML, and …

What do we want from Explainable Artificial Intelligence (XAI)?–A stakeholder perspective on XAI and a conceptual model guiding interdisciplinary XAI research

M Langer, D Oster, T Speith, H Hermanns, L Kästner… - Artificial Intelligence, 2021 - Elsevier
Abstract Previous research in Explainable Artificial Intelligence (XAI) suggests that a main
aim of explainability approaches is to satisfy specific interests, goals, expectations, needs …

A practical guide to multi-objective reinforcement learning and planning

CF Hayes, R Rădulescu, E Bargiacchi… - Autonomous Agents and …, 2022 - Springer
Real-world sequential decision-making tasks are generally complex, requiring trade-offs
between multiple, often conflicting, objectives. Despite this, the majority of research in …

Explainability in deep reinforcement learning

A Heuillet, F Couthouis, N Díaz-Rodríguez - Knowledge-Based Systems, 2021 - Elsevier
A large set of the explainable Artificial Intelligence (XAI) literature is emerging on feature
relevance techniques to explain a deep neural network (DNN) output or explaining models …

Explainable reinforcement learning: A survey

E Puiutta, EMSP Veith - … cross-domain conference for machine learning …, 2020 - Springer
Abstract Explainable Artificial Intelligence (XAI), ie, the development of more transparent and
interpretable AI models, has gained increased traction over the last few years. This is due to …

Explainable reinforcement learning through a causal lens

P Madumal, T Miller, L Sonenberg, F Vetere - Proceedings of the AAAI …, 2020 - aaai.org
Prominent theories in cognitive science propose that humans understand and represent the
knowledge of the world through causal relationships. In making sense of the world, we build …

State2explanation: Concept-based explanations to benefit agent learning and user understanding

D Das, S Chernova, B Kim - Advances in Neural …, 2023 - proceedings.neurips.cc
As more non-AI experts use complex AI systems for daily tasks, there has been an
increasing effort to develop methods that produce explanations of AI decision making that …

Explainable Deep Reinforcement Learning for UAV autonomous path planning

L He, N Aouf, B Song - Aerospace science and technology, 2021 - Elsevier
Autonomous navigation in unknown environment is still a hard problem for small Unmanned
Aerial Vehicles (UAVs). Recently, some neural network-based methods are proposed to …