A comprehensive survey on deep graph representation learning
Graph representation learning aims to effectively encode high-dimensional sparse graph-
structured data into low-dimensional dense vectors, which is a fundamental task that has …
structured data into low-dimensional dense vectors, which is a fundamental task that has …
Graph neural networks in recommender systems: a survey
With the explosive growth of online information, recommender systems play a key role to
alleviate such information overload. Due to the important application value of recommender …
alleviate such information overload. Due to the important application value of recommender …
Knowledge graph contrastive learning for recommendation
Knowledge Graphs (KGs) have been utilized as useful side information to improve
recommendation quality. In those recommender systems, knowledge graph information …
recommendation quality. In those recommender systems, knowledge graph information …
Learning intents behind interactions with knowledge graph for recommendation
Knowledge graph (KG) plays an increasingly important role in recommender systems. A
recent technical trend is to develop end-to-end models founded on graph neural networks …
recent technical trend is to develop end-to-end models founded on graph neural networks …
A survey on knowledge graphs: Representation, acquisition, and applications
Human knowledge provides a formal understanding of the world. Knowledge graphs that
represent structural relations between entities have become an increasingly popular …
represent structural relations between entities have become an increasingly popular …
A survey on accuracy-oriented neural recommendation: From collaborative filtering to information-rich recommendation
Influenced by the great success of deep learning in computer vision and language
understanding, research in recommendation has shifted to inventing new recommender …
understanding, research in recommendation has shifted to inventing new recommender …
A survey on knowledge graph-based recommender systems
To solve the information explosion problem and enhance user experience in various online
applications, recommender systems have been developed to model users' preferences …
applications, recommender systems have been developed to model users' preferences …
Multi-modal knowledge graph construction and application: A survey
Recent years have witnessed the resurgence of knowledge engineering which is featured
by the fast growth of knowledge graphs. However, most of existing knowledge graphs are …
by the fast growth of knowledge graphs. However, most of existing knowledge graphs are …
Multi-level cross-view contrastive learning for knowledge-aware recommender system
Knowledge graph (KG) plays an increasingly important role in recommender systems.
Recently, graph neural networks (GNNs) based model has gradually become the theme of …
Recently, graph neural networks (GNNs) based model has gradually become the theme of …
[PDF][PDF] 基于深度学习的推荐系统研究综述
黄立威, 江碧涛, 吕守业, 刘艳博, 李德毅 - 计算机学报, 2018 - cdn.jsdelivr.net
摘要深度学习是机器学习领域一个重要研究方向, 近年来在图像处理, 自然语言理解,
语音识别和在线广告等领域取得了突破性进展. 将深度学习融入推荐系统中 …
语音识别和在线广告等领域取得了突破性进展. 将深度学习融入推荐系统中 …