A review on outlier/anomaly detection in time series data
Recent advances in technology have brought major breakthroughs in data collection,
enabling a large amount of data to be gathered over time and thus generating time series …
enabling a large amount of data to be gathered over time and thus generating time series …
Survey on visual analysis of event sequence data
Event sequence data record series of discrete events in the time order of occurrence. They
are commonly observed in a variety of applications ranging from electronic health records to …
are commonly observed in a variety of applications ranging from electronic health records to …
Anomaly detection in time series: a comprehensive evaluation
S Schmidl, P Wenig, T Papenbrock - Proceedings of the VLDB …, 2022 - dl.acm.org
Detecting anomalous subsequences in time series data is an important task in areas
ranging from manufacturing processes over finance applications to health care monitoring …
ranging from manufacturing processes over finance applications to health care monitoring …
Learning graph structures with transformer for multivariate time-series anomaly detection in IoT
Many real-world Internet of Things (IoT) systems, which include a variety of Internet-
connected sensory devices, produce substantial amounts of multivariate time-series data …
connected sensory devices, produce substantial amounts of multivariate time-series data …
TSB-UAD: an end-to-end benchmark suite for univariate time-series anomaly detection
The detection of anomalies in time series has gained ample academic and industrial
attention. However, no comprehensive benchmark exists to evaluate time-series anomaly …
attention. However, no comprehensive benchmark exists to evaluate time-series anomaly …
A survey on explainable anomaly detection
In the past two decades, most research on anomaly detection has focused on improving the
accuracy of the detection, while largely ignoring the explainability of the corresponding …
accuracy of the detection, while largely ignoring the explainability of the corresponding …
SAND: streaming subsequence anomaly detection
With the increasing demand for real-time analytics and decision making, anomaly detection
methods need to operate over streams of values and handle drifts in data distribution …
methods need to operate over streams of values and handle drifts in data distribution …
Series2graph: Graph-based subsequence anomaly detection for time series
P Boniol, T Palpanas - arXiv preprint arXiv:2207.12208, 2022 - arxiv.org
Subsequence anomaly detection in long sequences is an important problem with
applications in a wide range of domains. However, the approaches proposed so far in the …
applications in a wide range of domains. However, the approaches proposed so far in the …
Choose wisely: An extensive evaluation of model selection for anomaly detection in time series
Anomaly detection is a fundamental task for time-series analytics with important implications
for the downstream performance of many applications. Despite increasing academic interest …
for the downstream performance of many applications. Despite increasing academic interest …
Unsupervised and scalable subsequence anomaly detection in large data series
Subsequence anomaly (or outlier) detection in long sequences is an important problem with
applications in a wide range of domains. However, the approaches that have been …
applications in a wide range of domains. However, the approaches that have been …