The evolution of distributed systems for graph neural networks and their origin in graph processing and deep learning: A survey

J Vatter, R Mayer, HA Jacobsen - ACM Computing Surveys, 2023 - dl.acm.org
Graph neural networks (GNNs) are an emerging research field. This specialized deep
neural network architecture is capable of processing graph structured data and bridges the …

Deep learning with graph convolutional networks: An overview and latest applications in computational intelligence

UA Bhatti, H Tang, G Wu, S Marjan… - International Journal of …, 2023 - Wiley Online Library
Convolutional neural networks (CNNs) have received widespread attention due to their
powerful modeling capabilities and have been successfully applied in natural language …

[PDF][PDF] 图卷积神经网络综述

徐冰冰, 岑科廷, 黄俊杰, 沈华伟, 程学旗 - 计算机学报, 2020 - 159.226.43.17
摘要过去几年, 卷积神经网络因其强大的建模能力引起广泛关注, 在自然语言处理,
图像识别等领域成功应用. 然而, 传统的卷积神经网络只能处理欧氏空间数据 …

Graph neural networks: foundation, frontiers and applications

L Wu, P Cui, J Pei, L Zhao, X Guo - … of the 28th ACM SIGKDD Conference …, 2022 - dl.acm.org
The field of graph neural networks (GNNs) has seen rapid and incredible strides over the
recent years. Graph neural networks, also known as deep learning on graphs, graph …

A survey on text classification: From traditional to deep learning

Q Li, H Peng, J Li, C Xia, R Yang, L Sun… - ACM Transactions on …, 2022 - dl.acm.org
Text classification is the most fundamental and essential task in natural language
processing. The last decade has seen a surge of research in this area due to the …

Lasuie: Unifying information extraction with latent adaptive structure-aware generative language model

H Fei, S Wu, J Li, B Li, F Li, L Qin… - Advances in …, 2022 - proceedings.neurips.cc
Universally modeling all typical information extraction tasks (UIE) with one generative
language model (GLM) has revealed great potential by the latest study, where various IE …

Graph learning: A survey

F Xia, K Sun, S Yu, A Aziz, L Wan… - IEEE Transactions on …, 2021 - ieeexplore.ieee.org
Graphs are widely used as a popular representation of the network structure of connected
data. Graph data can be found in a broad spectrum of application domains such as social …

Graph neural networks for natural language processing: A survey

L Wu, Y Chen, K Shen, X Guo, H Gao… - … and Trends® in …, 2023 - nowpublishers.com
Deep learning has become the dominant approach in addressing various tasks in Natural
Language Processing (NLP). Although text inputs are typically represented as a sequence …

Benchmarking graph neural networks

VP Dwivedi, CK Joshi, AT Luu, T Laurent… - Journal of Machine …, 2023 - jmlr.org
In the last few years, graph neural networks (GNNs) have become the standard toolkit for
analyzing and learning from data on graphs. This emerging field has witnessed an extensive …

Imagine that! abstract-to-intricate text-to-image synthesis with scene graph hallucination diffusion

S Wu, H Fei, H Zhang, TS Chua - Advances in Neural …, 2024 - proceedings.neurips.cc
In this work, we investigate the task of text-to-image (T2I) synthesis under the abstract-to-
intricate setting, ie, generating intricate visual content from simple abstract text prompts …