Graph representation learning in biomedicine and healthcare

MM Li, K Huang, M Zitnik - Nature Biomedical Engineering, 2022 - nature.com
Networks—or graphs—are universal descriptors of systems of interacting elements. In
biomedicine and healthcare, they can represent, for example, molecular interactions …

Artificial intelligence in histopathology: enhancing cancer research and clinical oncology

A Shmatko, N Ghaffari Laleh, M Gerstung, JN Kather - Nature cancer, 2022 - nature.com
Artificial intelligence (AI) methods have multiplied our capabilities to extract quantitative
information from digital histopathology images. AI is expected to reduce workload for human …

A review of deep learning-based multiple-lesion recognition from medical images: classification, detection and segmentation

H Jiang, Z Diao, T Shi, Y Zhou, F Wang, W Hu… - Computers in Biology …, 2023 - Elsevier
Deep learning-based methods have become the dominant methodology in medical image
processing with the advancement of deep learning in natural image classification, detection …

Deep learning-enabled virtual histological staining of biological samples

B Bai, X Yang, Y Li, Y Zhang, N Pillar… - Light: Science & …, 2023 - nature.com
Histological staining is the gold standard for tissue examination in clinical pathology and life-
science research, which visualizes the tissue and cellular structures using chromatic dyes or …

Eleven grand challenges in single-cell data science

D Lähnemann, J Köster, E Szczurek, DJ McCarthy… - Genome biology, 2020 - Springer
The recent boom in microfluidics and combinatorial indexing strategies, combined with low
sequencing costs, has empowered single-cell sequencing technology. Thousands—or even …

Whole slide images based cancer survival prediction using attention guided deep multiple instance learning networks

J Yao, X Zhu, J Jonnagaddala, N Hawkins… - Medical Image Analysis, 2020 - Elsevier
Traditional image-based survival prediction models rely on discriminative patch labeling
which make those methods not scalable to extend to large datasets. Recent studies have …

Deep neural network models for computational histopathology: A survey

CL Srinidhi, O Ciga, AL Martel - Medical image analysis, 2021 - Elsevier
Histopathological images contain rich phenotypic information that can be used to monitor
underlying mechanisms contributing to disease progression and patient survival outcomes …

Wilds: A benchmark of in-the-wild distribution shifts

PW Koh, S Sagawa, H Marklund… - International …, 2021 - proceedings.mlr.press
Distribution shifts—where the training distribution differs from the test distribution—can
substantially degrade the accuracy of machine learning (ML) systems deployed in the wild …

[HTML][HTML] The impact of pre-and post-image processing techniques on deep learning frameworks: A comprehensive review for digital pathology image analysis

M Salvi, UR Acharya, F Molinari… - Computers in Biology and …, 2021 - Elsevier
Recently, deep learning frameworks have rapidly become the main methodology for
analyzing medical images. Due to their powerful learning ability and advantages in dealing …

[HTML][HTML] A review of the application of deep learning in medical image classification and segmentation

L Cai, J Gao, D Zhao - Annals of translational medicine, 2020 - ncbi.nlm.nih.gov
Big medical data mainly include electronic health record data, medical image data, gene
information data, etc. Among them, medical image data account for the vast majority of …