ST-LBAGAN: Spatio-temporal learnable bidirectional attention generative adversarial networks for missing traffic data imputation

B Yang, Y Kang, YY Yuan, X Huang, H Li - Knowledge-Based Systems, 2021 - Elsevier
Real-time, accurate and comprehensive traffic flow data is the key of intelligent
transportation systems to provide efficient services for urban transportation. In the process of …

GAN and multi-agent DRL based decentralized traffic light signal control

Z Wang, H Zhu, M He, Y Zhou, X Luo… - IEEE Transactions on …, 2021 - ieeexplore.ieee.org
Adaptive traffic light signal control (ATSC) is a promising paradigm for alleviating traffic
congestion in intelligent transportation systems. Most of the existing methods require heavy …

Towards a Framework to Evaluate Generative Time Series Models for Mobility Data Features

IF Ribeiro, G Comarela, AAA Rocha… - Journal of Internet …, 2024 - journals-sol.sbc.org.br
Understanding human mobility has implications for several areas, such as immigration,
disease control, mobile networks performance, and urban planning. However, gathering and …

Traffic-data recovery using geometric-algebra-based generative adversarial network

D Zang, Y Ding, X Qu, C Miao, X Chen, J Zhang… - Sensors, 2022 - mdpi.com
Traffic-data recovery plays an important role in traffic prediction, congestion judgment, road
network planning and other fields. Complete and accurate traffic data help to find the laws …

[PDF][PDF] MobDeep: um arcabouço para geração de dados de mobilidade urbana utilizando aprendizado profundo

ES Vitória - sappg.ufes.br
Entender a mobilidade dos componentes de redes móveis é fundamental para diversos
tipos de redes, como redes sem fio, redes veiculares ou ad hoc. Nesse sentido, o estudo e …