A comprehensive comparative study of artificial neural network (ANN) and support vector machines (SVM) on stock forecasting

A Kurani, P Doshi, A Vakharia, M Shah - Annals of Data Science, 2023 - Springer
From exchanging budgetary instruments to tracking individual spending plans to detail a
business's profit, money-related organisations utilise computational innovation day by day …

Ai in finance: challenges, techniques, and opportunities

L Cao - ACM Computing Surveys (CSUR), 2022 - dl.acm.org
AI in finance refers to the applications of AI techniques in financial businesses. This area has
attracted attention for decades, with both classic and modern AI techniques applied to …

Financial time series forecasting with deep learning: A systematic literature review: 2005–2019

OB Sezer, MU Gudelek, AM Ozbayoglu - Applied soft computing, 2020 - Elsevier
Financial time series forecasting is undoubtedly the top choice of computational intelligence
for finance researchers in both academia and the finance industry due to its broad …

Green edge AI: A contemporary survey

Y Mao, X Yu, K Huang, YJA Zhang… - Proceedings of the …, 2024 - ieeexplore.ieee.org
Artificial intelligence (AI) technologies have emerged as pivotal enablers across a multitude
of industries, including consumer electronics, healthcare, and manufacturing, largely due to …

Financial applications of machine learning: A literature review

N Nazareth, YVR Reddy - Expert Systems with Applications, 2023 - Elsevier
This systematic literature review analyses the recent advances of machine learning and
deep learning in finance. The study considers six financial domains: stock markets, portfolio …

[HTML][HTML] How are reinforcement learning and deep learning algorithms used for big data based decision making in financial industries–A review and research agenda

V Singh, SS Chen, M Singhania, B Nanavati… - International Journal of …, 2022 - Elsevier
Data availability and accessibility have brought in unseen changes in the finance systems
and new theoretical and computational challenges. For example, in contrast to classical …

A novel graph convolutional feature based convolutional neural network for stock trend prediction

W Chen, M Jiang, WG Zhang, Z Chen - Information Sciences, 2021 - Elsevier
Stock trend prediction is one of the most widely investigated and challenging problems for
investors and researchers. Since the convolutional neural network (CNN) was introduced to …

Data-centric artificial intelligence: A survey

D Zha, ZP Bhat, KH Lai, F Yang, Z Jiang… - arXiv preprint arXiv …, 2023 - arxiv.org
Artificial Intelligence (AI) is making a profound impact in almost every domain. A vital enabler
of its great success is the availability of abundant and high-quality data for building machine …

Financial cybercrime: A comprehensive survey of deep learning approaches to tackle the evolving financial crime landscape

J Nicholls, A Kuppa, NA Le-Khac - Ieee Access, 2021 - ieeexplore.ieee.org
Machine Learning and Deep Learning methods are widely adopted across financial
domains to support trading activities, mobile banking, payments, and making customer credit …

[PDF][PDF] Deep convolution neural network model for credit-card fraud detection and alert

JIZ Chen, KL Lai - Journal of Artificial Intelligence, 2021 - scholar.archive.org
With the exponential increase in the usage of the internet, numerous organisations,
including the financial industry, have operationalized online services. The massive financial …