[HTML][HTML] QU-BraTS: MICCAI BraTS 2020 challenge on quantifying uncertainty in brain tumor segmentation-analysis of ranking scores and benchmarking results

R Mehta, A Filos, U Baid, C Sako… - The journal of …, 2022 - ncbi.nlm.nih.gov
Deep learning (DL) models have provided state-of-the-art performance in various medical
imaging benchmarking challenges, including the Brain Tumor Segmentation (BraTS) …

Fully automatic MRI brain tumor segmentation using efficient spatial attention convolutional networks with composite loss

I Mazumdar, J Mukherjee - Neurocomputing, 2022 - Elsevier
Automatically segmenting tumors from brain magnetic resonance imaging scans is crucial
for diagnosis and planning treatment. However, brain tumors are highly diverse in location …

E1D3 U-Net for Brain Tumor Segmentation: Submission to the RSNA-ASNR-MICCAI BraTS 2021 challenge

ST Bukhari, H Mohy-ud-Din - International MICCAI Brainlesion Workshop, 2021 - Springer
Abstract Convolutional Neural Networks (CNNs) have demonstrated state-of-the-art
performance in medical image segmentation tasks. A common feature in most top …

Brain tumor segmentation with corner attention and high-dimensional perceptual loss

W Xu, H Yang, M Zhang, Z Cao, X Pan, W Liu - … Signal Processing and …, 2022 - Elsevier
Accurate segmentation of brain tumors in MRI sequences is an essential factor that helps
doctors make detailed surgery plans and evaluate prognoses. However, due to the diversity …

Efficient nnU-Net for Brain Tumor Segmentation

T Magadza, S Viriri - IEEE Access, 2023 - ieeexplore.ieee.org
Brain tumors are one of the leading causes of death in adults. They come in various shapes
and sizes from one patient to another. Sometimes, they infiltrate surrounding normal tissues …

Glioma segmentation based on dense contrastive learning and multimodal features recalibration

X Hu, L Wang, L Wang, Q Chen… - Physics in Medicine & …, 2024 - iopscience.iop.org
Accurate segmentation of different regions of gliomas from multimodal magnetic resonance
(MR) images is crucial for glioma grading and precise diagnosis, but many existing …

Survey on Segmentation of Brain Abnormalities in MRI Scan Images

II Ahmed, OMH Al Okashi - 2024 21st International Multi …, 2024 - ieeexplore.ieee.org
-Medical image segmentation plays an important role in disease monitoring, such as tumor
growth, dosage control of medication, and radiation exposure in the human body. Image …

Integrating Bayesian deep learning uncertainties in medical image analysis

R Mehta - 2023 - escholarship.mcgill.ca
Bien qu'il ait été démontré que les modèles d'apprentissage en profondeur (DL)
fonctionnent très bien sur diverses tâches d'imagerie médicale, l'inférence en présence de …