Computing edge metric dimension of one-pentagonal carbon nanocone
Minimum resolving sets (edge or vertex) have become an integral part of molecular topology
and combinatorial chemistry. Resolving sets for a specific network provide crucial …
and combinatorial chemistry. Resolving sets for a specific network provide crucial …
Properties of entropy-based topological measures of fullerenes
A fullerene is a cubic three-connected graph whose faces are entirely composed of
pentagons and hexagons. Entropy applied to graphs is one of the significant approaches to …
pentagons and hexagons. Entropy applied to graphs is one of the significant approaches to …
Mathematical aspects of fullerenes
V Andova, F Kardoš, R Škrekovski - Ars Mathematica Contemporanea, 2016 - hal.science
Fullerene graphs are cubic, 3-connected, planar graphs with exactly 12 pentagonal faces,
while all other faces are hexagons. Fullerene graphs are mathematical models of fullerene …
while all other faces are hexagons. Fullerene graphs are mathematical models of fullerene …
[PDF][PDF] Wiener dimension: fundamental properties and (5, 0)-nanotubical fullerenes
The Wiener dimension of a connected graph is introduced as the number of different
distances of its vertices. For any integer D and any integer k, a graph of diameter D and of …
distances of its vertices. For any integer D and any integer k, a graph of diameter D and of …
ZZ Polynomials for Isomers of (5,6)-Fullerenes Cn with n = 20–50
HA Witek, JS Kang - Symmetry, 2020 - mdpi.com
A compilation of ZZ polynomials (aka Zhang–Zhang polynomials or Clar covering
polynomials) for all isomers of small (5, 6)-fullerenes C n with n= 20–50 is presented. The ZZ …
polynomials) for all isomers of small (5, 6)-fullerenes C n with n= 20–50 is presented. The ZZ …
Sandwiching saturation number of fullerene graphs
V Andova, F Kardoš, R Škrekovski - arXiv preprint arXiv:1405.2197, 2014 - arxiv.org
The saturation number of a graph $ G $ is the cardinality of any smallest maximal matching
of $ G $, and it is denoted by $ s (G) $. Fullerene graphs are cubic planar graphs with exactly …
of $ G $, and it is denoted by $ s (G) $. Fullerene graphs are cubic planar graphs with exactly …
Effect of Calcium and Fullerene Symmetry Spatial Minimization on Angiogenesis
M Rivas, M Reina - Symmetry, 2023 - mdpi.com
The topological partition theory states that icosahedral group affine extensions (fullerenes
symmetry) are the most effective way to energetically optimize the surface covering. In recent …
symmetry) are the most effective way to energetically optimize the surface covering. In recent …
[HTML][HTML] Kekulé Counts, Clar Numbers, and ZZ Polynomials for All Isomers of (5, 6)-Fullerenes C52–C70
HA Witek, R Podeszwa - Molecules, 2024 - pmc.ncbi.nlm.nih.gov
We report an extensive tabulation of several important topological invariants for all the
isomers of carbon (5, 6)-fullerenes Cn with n= 52–70. The topological invariants (including …
isomers of carbon (5, 6)-fullerenes Cn with n= 52–70. The topological invariants (including …
Odd cycle transversals and independent sets in fullerene graphs
L Faria, S Klein, M Stehlik - SIAM Journal on Discrete Mathematics, 2012 - SIAM
A fullerene graph is a cubic bridgeless plane graph with all faces of size 5 and 6. We show
that every fullerene graph on n vertices can be made bipartite by deleting at most 12n/5 …
that every fullerene graph on n vertices can be made bipartite by deleting at most 12n/5 …
Topological invariants of nanocones and fullerenes
F Koorepazan-Moftakhar, AR Ashrafi… - Current Organic …, 2015 - ingentaconnect.com
The Timisoara-eccentricity (TM-EC) index of a molecular graph is defined as the sum of δiεiζi
over all atoms i in Γ, where ζi, εi and ζi are the degree, eccentricity and the number of atoms …
over all atoms i in Γ, where ζi, εi and ζi are the degree, eccentricity and the number of atoms …