A review of feature selection methods in medical applications

B Remeseiro, V Bolon-Canedo - Computers in biology and medicine, 2019 - Elsevier
Feature selection is a preprocessing technique that identifies the key features of a given
problem. It has traditionally been applied in a wide range of problems that include biological …

[HTML][HTML] Cognitive neuroscience and robotics: Advancements and future research directions

S Liu, L Wang, RX Gao - Robotics and Computer-Integrated Manufacturing, 2024 - Elsevier
In recent years, brain-based technologies that capitalise on human abilities to facilitate
human–system/robot interactions have been actively explored, especially in brain robotics …

Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals

UR Acharya, SL Oh, Y Hagiwara, JH Tan… - Computers in biology and …, 2018 - Elsevier
An encephalogram (EEG) is a commonly used ancillary test to aide in the diagnosis of
epilepsy. The EEG signal contains information about the electrical activity of the brain …

A review of feature extraction and performance evaluation in epileptic seizure detection using EEG

P Boonyakitanont, A Lek-Uthai, K Chomtho… - … Signal Processing and …, 2020 - Elsevier
Since the manual detection of electrographic seizures in continuous electroencephalogram
(EEG) monitoring is very time-consuming and requires a trained expert, attempts to develop …

A deep learning based ensemble learning method for epileptic seizure prediction

SM Usman, S Khalid, S Bashir - Computers in Biology and Medicine, 2021 - Elsevier
In epilepsy, patients suffer from seizures which cannot be controlled with medicines or
surgical treatments in more than 30% of the cases. Prediction of epileptic seizures is …

Detection of epileptic seizures on EEG signals using ANFIS classifier, autoencoders and fuzzy entropies

A Shoeibi, N Ghassemi, M Khodatars… - … Signal Processing and …, 2022 - Elsevier
Epileptic seizures are one of the most crucial neurological disorders, and their early
diagnosis will help the clinicians to provide accurate treatment for the patients. The …

Evolutionary inspired approach for mental stress detection using EEG signal

LD Sharma, VK Bohat, M Habib, AZ Ala'M… - Expert systems with …, 2022 - Elsevier
Stress is a pensive issue in our competitive world and it has a huge impact on physical and
mental health. Severe health issues may arise due to long exposure of stress. Hence, its …

The entropy algorithm and its variants in the fault diagnosis of rotating machinery: A review

Y Li, X Wang, Z Liu, X Liang, S Si - Ieee Access, 2018 - ieeexplore.ieee.org
Rotating machines have been widely used in industrial engineering. The fault diagnosis of
rotating machines plays a vital important role to reduce the catastrophic failures and heavy …

A multi-view deep learning framework for EEG seizure detection

Y Yuan, G Xun, K Jia, A Zhang - IEEE journal of biomedical and …, 2018 - ieeexplore.ieee.org
The recent advances in pervasive sensing technologies have enabled us to monitor and
analyze the multi-channel electroencephalogram (EEG) signals of epilepsy patients to …

Computational network biology: data, models, and applications

C Liu, Y Ma, J Zhao, R Nussinov, YC Zhang, F Cheng… - Physics Reports, 2020 - Elsevier
Biological entities are involved in intricate and complex interactions, in which uncovering the
biological information from the network concepts are of great significance. Benefiting from …