Two-grid methods for Maxwell eigenvalue problems

J Zhou, X Hu, L Zhong, S Shu, L Chen - SIAM journal on numerical analysis, 2014 - SIAM
Two new two-grid algorithms are proposed for solving the Maxwell eigenvalue problem. The
new methods are based on the two-grid methodology recently proposed by Xu and Zhou …

The shifted-inverse iteration based on the multigrid discretizations for eigenvalue problems

Y Yang, H Bi, J Han, Y Yu - SIAM Journal on Scientific Computing, 2015 - SIAM
The shifted-inverse iteration based on the multigrid discretizations developed in recent years
is an efficient computation method for eigenvalue problems. In this paper, for general self …

A two-level preconditioned Helmholtz-Jacobi-Davidson method for the Maxwell eigenvalue problem

Q Liang, X Xu - Mathematics of Computation, 2022 - ams.org
In this paper, based on a domain decomposition method, we propose an efficient two-level
preconditioned Helmholtz-Jacobi-Davidson (PHJD) method for solving the algebraic …

Multigrid preconditioners for mixed finite element methods of the vector Laplacian

L Chen, Y Wu, L Zhong, J Zhou - Journal of Scientific Computing, 2018 - Springer
Due to the indefiniteness and poor spectral properties, the discretized linear algebraic
system of the vector Laplacian by mixed finite element methods is hard to solve. A block …

A-priori and a-posteriori error estimates for discontinuous Galerkin method of the Maxwell eigenvalue problem

J Zhang, Z Luo, J Han, H Chen - Computers & Mathematics with …, 2024 - Elsevier
This paper is devoted to a-priori and a-posteriori error analysis of discontinuous Galerkin
(DG) method for the Maxwell eigenvalue problem. The discrete compactness of DG space is …

A two-level preconditioned Helmholtz subspace iterative method for Maxwell eigenvalue problems

Q Liang, X Xu - SIAM Journal on Numerical Analysis, 2023 - SIAM
In this paper, based on a domain decomposition method, we shall propose a two-level
preconditioned Helmholtz subspace iterative (PHSI) method for solving algebraic …

The two-grid discretization of Ciarlet–Raviart mixed method for biharmonic eigenvalue problems

Y Zhang, H Bi, Y Yang - Applied Numerical Mathematics, 2019 - Elsevier
In this paper, for biharmonic eigenvalue problems with clamped boundary condition in R n
which include plate vibration problem and plate buckling problem, we primarily study the two …

A multigrid discretization scheme based on the shifted inverse iteration for the Steklov eigenvalue problem in inverse scattering

J Xie, H Bi - Open Mathematics, 2023 - degruyter.com
Numerical methods for computing Steklov eigenvalues have attracted the attention of
academia for their important physical background and wide applications. In this article we …

[PDF][PDF] STABILIZED TWO-GRID DISCRETIZATIONS OF LOCKING FREE FOR THE ELASTICITY EIGENVALUE PROBLEM

X Zhang, Y Yang, H Bi - Journal of Applied Analysis & Computation, 2024 - jaac-online.com
In this paper, we propose two stabilized two-grid finite element discretizations for nearly
incompressible elasticity eigenvalue problem and give the error estimates of eigenvalues …

[HTML][HTML] 求解流固振动Laplace 模型的基于Rayleigh 商移位反迭代的多网格方案

杜小虎, 闭海 - Advances in Applied Mathematics, 2021 - hanspub.org
本文讨论流固振动Laplace 模型, 首先建立该问题的基于Rayleigh 商移位反迭代的多网格离散
方案, 利用该方案将在细网格上求解特征值问题归结为在粗网格上解特征值问题和在细网格上解 …