Weakly supervised object localization and detection: A survey
As an emerging and challenging problem in the computer vision community, weakly
supervised object localization and detection plays an important role for developing new …
supervised object localization and detection plays an important role for developing new …
FAIR1M: A benchmark dataset for fine-grained object recognition in high-resolution remote sensing imagery
With the rapid development of deep learning, many deep learning-based approaches have
made great achievements in object detection tasks. It is generally known that deep learning …
made great achievements in object detection tasks. It is generally known that deep learning …
Object detection in optical remote sensing images: A survey and a new benchmark
Substantial efforts have been devoted more recently to presenting various methods for
object detection in optical remote sensing images. However, the current survey of datasets …
object detection in optical remote sensing images. However, the current survey of datasets …
A survey of deep learning-based object detection
Object detection is one of the most important and challenging branches of computer vision,
which has been widely applied in people's life, such as monitoring security, autonomous …
which has been widely applied in people's life, such as monitoring security, autonomous …
Intelligent small object detection for digital twin in smart manufacturing with industrial cyber-physical systems
Recently, along with several technological advancements in cyber-physical systems, the
revolution of Industry 4.0 has brought in an emerging concept named digital twin (DT), which …
revolution of Industry 4.0 has brought in an emerging concept named digital twin (DT), which …
When deep learning meets metric learning: Remote sensing image scene classification via learning discriminative CNNs
Remote sensing image scene classification is an active and challenging task driven by
many applications. More recently, with the advances of deep learning models especially …
many applications. More recently, with the advances of deep learning models especially …
Deep learning in remote sensing: A comprehensive review and list of resources
Central to the looming paradigm shift toward data-intensive science, machine-learning
techniques are becoming increasingly important. In particular, deep learning has proven to …
techniques are becoming increasingly important. In particular, deep learning has proven to …
Remote sensing image scene classification: Benchmark and state of the art
Remote sensing image scene classification plays an important role in a wide range of
applications and hence has been receiving remarkable attention. During the past years …
applications and hence has been receiving remarkable attention. During the past years …
A survey of the four pillars for small object detection: Multiscale representation, contextual information, super-resolution, and region proposal
Although great progress has been made in generic object detection by advanced deep
learning techniques, detecting small objects from images is still a difficult and challenging …
learning techniques, detecting small objects from images is still a difficult and challenging …
[HTML][HTML] Deep learning-based object detection techniques for remote sensing images: A survey
Z Li, Y Wang, N Zhang, Y Zhang, Z Zhao, D Xu, G Ben… - Remote Sensing, 2022 - mdpi.com
Object detection in remote sensing images (RSIs) requires the locating and classifying of
objects of interest, which is a hot topic in RSI analysis research. With the development of …
objects of interest, which is a hot topic in RSI analysis research. With the development of …