Oversampling Methods for Handling Imbalance Data in Binary Classification
T Riston, SN Suherman, Y Yonnatan… - … Science and Its …, 2023 - Springer
Data preparation occupies the majority of data science, about 60–80%. The process of data
preparation can produce an accurate output of information to be used in decision making …
preparation can produce an accurate output of information to be used in decision making …
An empirical study on anomaly detection algorithms for extremely imbalanced datasets
Anomaly detection attempts to identify abnormal events that deviate from normality. Since
such events are often rare, data related to this domain is usually imbalanced. In this paper …
such events are often rare, data related to this domain is usually imbalanced. In this paper …
An Evolutionary Neural Network Approach for Slopes Stability Assessment
A current big challenge for developed or developing countries is how to keep large-scale
transportation infrastructure networks operational under all conditions. Network extensions …
transportation infrastructure networks operational under all conditions. Network extensions …
Predicting Machine Failures from Multivariate Time Series: An Industrial Case Study
NO Pinciroli Vago, F Forbicini, P Fraternali - Machines, 2024 - mdpi.com
Non-neural machine learning (ML) and deep learning (DL) are used to predict system
failures in industrial maintenance. However, only a few studies have assessed the effect of …
failures in industrial maintenance. However, only a few studies have assessed the effect of …
AI4CITY-An Automated Machine Learning Platform for Smart Cities
PJ Pereira, C Gonçalves, LL Nunes, P Cortez… - Proceedings of the 38th …, 2023 - dl.acm.org
Nowadays, the general interest in Machine Learning (ML) based solutions is increasing.
However, to develop and deploy a ML solution often requires experience and it involves …
However, to develop and deploy a ML solution often requires experience and it involves …
Cost-Sensitive Learning and Threshold-Moving Approach to Improve Industrial Lots Release Process on Imbalanced Datasets
Abstract With Industry 4.0, companies must manage massive and generally imbalanced
datasets. In an automotive company, the lots release decision process must cope with this …
datasets. In an automotive company, the lots release decision process must cope with this …
Desenvolvimento de uma plataforma de Big Data Analytics para desenvolvimento do produto em contexto industrial
GJS Fontes - 2022 - repositorium.sdum.uminho.pt
Os atuais ambientes de produção são pressionados para obter uma variedade crescente de
produtos personalizados e de alta qualidade em lotes muito flexíveis. A elevada dinâmica …
produtos personalizados e de alta qualidade em lotes muito flexíveis. A elevada dinâmica …
Desenvolvimento de uma Plataforma de Big Data Analytics para Desenvolvimento do Produto em Contexto Industrial
GJ da Silva Fontes - 2022 - search.proquest.com
Os atuais ambientes de produção são pressionados para obter uma variedade crescente de
produtos personalizados e de alta qualidade em lotes muito flexíveis. A elevada dinâmica …
produtos personalizados e de alta qualidade em lotes muito flexíveis. A elevada dinâmica …