Cluster structures on braid varieties

R Casals, E Gorsky, M Gorsky, I Le, L Shen… - Journal of the American …, 2024 - ams.org
We show the existence of cluster $\mathcal {A} $-structures and cluster Poisson structures
on any braid variety, for any simple Lie group. The construction is achieved via weave …

[PDF][PDF] Braid variety cluster structures, II: general type

P Galashin, T Lam, M Sherman-Bennett - arXiv preprint arXiv:2301.07268, 2023 - arxiv.org
arXiv:2301.07268v2 [math.AG] 7 Feb 2023 Page 1 BRAID VARIETY CLUSTER STRUCTURES,
II: GENERAL TYPE PAVEL GALASHIN, THOMAS LAM, AND MELISSA SHERMAN-BENNETT …

Positroid links and braid varieties

R Casals, E Gorsky, M Gorsky, J Simental - arXiv preprint arXiv …, 2021 - arxiv.org
We study braid varieties and their relation to open positroid varieties. We discuss four
different types of braids associated to open positroid strata and show that their associated …

Plabic links, quivers, and skein relations

P Galashin, T Lam - arXiv preprint arXiv:2208.01175, 2022 - arxiv.org
We study relations between cluster algebra invariants and link invariants. First, we show that
several constructions of positroid links (permutation links, Richardson links, grid diagram …

Positive microlocal holonomies are globally regular

R Casals, W Li - arXiv preprint arXiv:2409.07435, 2024 - arxiv.org
We establish a geometric criterion for local microlocal holonomies to be globally regular on
the moduli space of Lagrangian fillings. This local-to-global regularity result holds for …

Algebra and geometry of link homology: Lecture notes from the IHES 2021 Summer School

E Gorsky, O Kivinen, J Simental - Bulletin of the London …, 2023 - Wiley Online Library
These notes cover the lectures of the first named author at 2021 IHES Summer School on
“Enumerative Geometry, Physics and Representation Theory” with additional details and …

Analogs of the dual canonical bases for cluster algebras from Lie theory

F Qin - arXiv preprint arXiv:2407.02480, 2024 - arxiv.org
For almost all the known (quantum) cluster algebras from Lie theory, we construct the
common triangular bases. These bases provide analogs of the dual canonical bases which …

On Leclerc's conjectural cluster structures for open Richardson varieties

P Cao, B Keller - arXiv preprint arXiv:2207.10184, 2022 - arxiv.org
In 2016, Leclerc constructed conjectural cluster structures on open Richardson varieties
using representations of preprojective algebras. A variant with more explicit seeds was …

Richardson varieties, projected Richardson varieties and positroid varieties

DE Speyer - arXiv preprint arXiv:2303.04831, 2023 - arxiv.org
This is a survey article on Richardson varieties and their combinatorics. A Richardson
variety is the intersection, inside the flag manifold GL_n/B_+, of a Schubert cell (B_-u …

Applications of the freezing operators on cluster algebras

F Qin - arXiv preprint arXiv:2407.03186, 2024 - arxiv.org
We apply freezing operators to relate different (quantum) upper cluster algebras. We prove
that these operators send localized (quantum) cluster monomials to localized (quantum) …