[图书][B] Les préfaisceaux comme modèles des types d'homotopie

DC Cisinski - 2006 - webusers.imj-prg.fr
qrothendie k introduit d ns À la poursuite des champs l notion de catégorie testD petite
tégorie y nt pr définition l propriété que les préf isE e ux sur elleE i sont n turellement des …

Right Bousfield localization and operadic algebras

D White, D Yau - arXiv preprint arXiv:1512.07570, 2015 - arxiv.org
It is well known that under some general conditions right Bousfield localization exists. We
provide general conditions under which right Bousfield localization yields a monoidal model …

Cellular properties of nilpotent spaces

W Chachólski, ED Farjoun, R Flores, J Scherer - Geometry & Topology, 2015 - msp.org
We show that cellular approximations of nilpotent Postnikov stages are always nilpotent
Postnikov stages, in particular classifying spaces of nilpotent groups are turned into …

Abstract cellularization as a cellularization with respect to a set of objects

B Chorny - arXiv preprint math/0607126, 2006 - arxiv.org
Given a simplicial idempotent augmented endofunctor $ F $ on a simplicial combinatorial
model category $ M $, under the assumption of Vopenka's principle, we exhibit a set $ A $ of …

Cellularization of structures in stable homotopy categories

JJ Gutiérrez - … Proceedings of the Cambridge Philosophical Society, 2012 - cambridge.org
We describe the formal framework for cellularization functors in triangulated categories and
study the preservation of ring and module structures under these functors in stable …

Emergence of the Witt group in the cellular lattice of rational spaces

K Hess, PE Parent - Transactions of the American Mathematical Society, 2002 - ams.org
EMERGENCE OF THE WITT GROUP IN THE CELLULAR LATTICE OF RATIONAL SPACES 1.
Introduction It is now a well-established fact in unst Page 1 TRANSACTIONS OF THE …

[图书][B] Resolving Classes and Resolvable Spaces in Rational Homotopy Theory

TL Clark - 2016 - search.proquest.com
A class of topological spaces is called a resolving class if it is closed under weak
equivalences and homotopy limits. Letting R (A) denote the smallest resolving class …

Homotopy colimits of nilpotent spaces

W Chacholski, ED Farjoun, R Flores… - arXiv preprint arXiv …, 2014 - arxiv.org
We show that cellular approximations of nilpotent Postnikov stages are always nilpotent
Postnikov stages, in particular classifying spaces of nilpotent groups are turned into …

Density and unique decomposition theorems for the lattice of cellular classes

Y Felix, PE Parent - Israel Journal of Mathematics, 2003 - Springer
A class C of pointed spaces is called a cellular class if it is closed under weak equivalences,
arbitrary wedges and pointed homotopy pushouts. The smallest cellular class containing X …

Homotopical complexity and good spaces

M Intermont, J Strom - Transactions of the American Mathematical Society, 2007 - ams.org
This paper is an exploration of two ideas in the study of closed classes: the $ A $-complexity
of a space $ X $ and the notion of good spaces (spaces $ A $ for which $\mathcal …