[HTML][HTML] Scientific machine learning through physics–informed neural networks: Where we are and what's next
Abstract Physics-Informed Neural Networks (PINN) are neural networks (NNs) that encode
model equations, like Partial Differential Equations (PDE), as a component of the neural …
model equations, like Partial Differential Equations (PDE), as a component of the neural …
[HTML][HTML] Deep learning modelling techniques: current progress, applications, advantages, and challenges
Deep learning (DL) is revolutionizing evidence-based decision-making techniques that can
be applied across various sectors. Specifically, it possesses the ability to utilize two or more …
be applied across various sectors. Specifically, it possesses the ability to utilize two or more …
[HTML][HTML] Groundwater level prediction using machine learning models: A comprehensive review
H Tao, MM Hameed, HA Marhoon… - Neurocomputing, 2022 - Elsevier
Developing accurate soft computing methods for groundwater level (GWL) forecasting is
essential for enhancing the planning and management of water resources. Over the past two …
essential for enhancing the planning and management of water resources. Over the past two …
Exploring the effect of image enhancement techniques on COVID-19 detection using chest X-ray images
Computer-aided diagnosis for the reliable and fast detection of coronavirus disease (COVID-
19) has become a necessity to prevent the spread of the virus during the pandemic to ease …
19) has become a necessity to prevent the spread of the virus during the pandemic to ease …
Transfer learning techniques for medical image analysis: A review
Medical imaging is a useful tool for disease detection and diagnostic imaging technology
has enabled early diagnosis of medical conditions. Manual image analysis methods are …
has enabled early diagnosis of medical conditions. Manual image analysis methods are …
Review on deep learning applications in frequency analysis and control of modern power system
The penetration of renewable energy resources (RES) generation and the interconnection of
regional power grids in wide area and large scale have led the modern power system to …
regional power grids in wide area and large scale have led the modern power system to …
A comprehensive review of deep learning applications in hydrology and water resources
The global volume of digital data is expected to reach 175 zettabytes by 2025. The volume,
variety and velocity of water-related data are increasing due to large-scale sensor networks …
variety and velocity of water-related data are increasing due to large-scale sensor networks …
A review on social spam detection: Challenges, open issues, and future directions
Abstract Online Social Networks are perpetually evolving and used in plenteous
applications such as content sharing, chatting, making friends/followers, customer …
applications such as content sharing, chatting, making friends/followers, customer …
Deep learning for Alzheimer's disease diagnosis: A survey
M Khojaste-Sarakhsi, SS Haghighi… - Artificial intelligence in …, 2022 - Elsevier
Alzheimer's Disease (AD) is an irreversible neurodegenerative disease that results in a
progressive decline in cognitive abilities. Since AD starts several years before the onset of …
progressive decline in cognitive abilities. Since AD starts several years before the onset of …
[HTML][HTML] A stacking ensemble of deep learning models for IoT intrusion detection
R Lazzarini, H Tianfield, V Charissis - Knowledge-Based Systems, 2023 - Elsevier
The number of Internet of Things (IoT) devices has increased considerably in the past few
years, which resulted in an exponential growth of cyber attacks on IoT infrastructure. As a …
years, which resulted in an exponential growth of cyber attacks on IoT infrastructure. As a …