Towards the Erdős-Gallai cycle decomposition conjecture
M Bucić, R Montgomery - Proceedings of the 55th Annual ACM …, 2023 - dl.acm.org
In the 1960's, Erdős and Gallai conjectured that the edges of any n-vertex graph can be
decomposed into O (n) cycles and edges. We improve upon the previous best bound of O (n …
decomposed into O (n) cycles and edges. We improve upon the previous best bound of O (n …
Approximating Small Sparse Cuts
We study polynomial-time approximation algorithms for edge and vertex Sparsest Cut and
Small Set Expansion in terms of k, the number of edges or vertices cut in the optimal …
Small Set Expansion in terms of k, the number of edges or vertices cut in the optimal …
[PDF][PDF] New Approximation Bounds for Small-Set Vertex Expansion
The vertex expansion of graph is a fundamental graph parameter. Given a graph G=(V, E)
and a parameter δ∈(0, 1/2], its δ-SSVE is defined as where∂ V (S) is the vertex boundary of …
and a parameter δ∈(0, 1/2], its δ-SSVE is defined as where∂ V (S) is the vertex boundary of …
Strong parallel repetition for unique games on small set expanders
D Moshkovitz - arXiv preprint arXiv:2103.08743, 2021 - arxiv.org
Strong Parallel Repetition for Unique Games on Small Set Expanders The strong parallel
repetition problem for unique games is to efficiently reduce the 1-delta vs. 1-C* delta gap …
repetition problem for unique games is to efficiently reduce the 1-delta vs. 1-C* delta gap …
Approximating csps with outliers
Constraint satisfaction problems (CSPs) are ubiquitous in theoretical computer science. We
study the problem of StrongCSPs, ie instances where a large induced sub-instance has a …
study the problem of StrongCSPs, ie instances where a large induced sub-instance has a …
Exact Recovery Algorithm for Planted Bipartite Graph in Semi-Random Graphs
The problem of finding the largest induced balanced bipartite subgraph in a given graph is
NP-hard. This problem is closely related to the problem of finding the smallest Odd Cycle …
NP-hard. This problem is closely related to the problem of finding the smallest Odd Cycle …