Texts in Applied Mathematics 2
JE Marsden, L Sirovich, SS Antman, G Iooss, P Holmes… - 2003 - Springer
In this book we will study equations of the following form x= f (x, t; µ),(0.0. 1) and x↦→ g (x;
µ),(0.0. 2) with x∈ U⊂ Rn, t∈ R1, and µ∈ V⊂ Rp where U and V are open sets in Rn and …
µ),(0.0. 2) with x∈ U⊂ Rn, t∈ R1, and µ∈ V⊂ Rp where U and V are open sets in Rn and …
Homoclinic and heteroclinic bifurcations in vector fields
AJ Homburg, B Sandstede - Handbook of dynamical systems, 2010 - Elsevier
Our goal in this paper is to review the existing literature on homoclinic and heteroclinic
bifurcation theory for flows. More specifically, we shall focus on bifurcations from homoclinic …
bifurcation theory for flows. More specifically, we shall focus on bifurcations from homoclinic …
Elements of contemporary theory of dynamical chaos: A tutorial. Part I. Pseudohyperbolic attractors
AS Gonchenko, SV Gonchenko… - … Journal of Bifurcation …, 2018 - World Scientific
The paper is devoted to topical issues of modern mathematical theory of dynamical chaos
and its applications. At present, it is customary to assume that dynamical chaos in finite …
and its applications. At present, it is customary to assume that dynamical chaos in finite …
Existence of a singularly degenerate heteroclinic cycle in the Lorenz system and its dynamical consequences: Part I
H Kokubu, R Roussarie - Journal of Dynamics and Differential Equations, 2004 - Springer
We prove that the Lorenz system with appropriate choice of parameter values has a specific
type of heteroclinic cycle, called a singularly degenerate heteroclinic cycle, that consists of a …
type of heteroclinic cycle, called a singularly degenerate heteroclinic cycle, that consists of a …
Hopf-Zero singularities truly unfold chaos
We provide conditions to guarantee the occurrence of Shilnikov bifurcations in analytic
unfoldings of some Hopf-Zero singularities through a beyond all order phenomenon: the …
unfoldings of some Hopf-Zero singularities through a beyond all order phenomenon: the …
Математическая теория динамического хаоса и её приложения: Обзор. Часть 1. Псевдогиперболические аттракторы
АС Гонченко, СВ Гонченко, АО Казаков… - Известия высших …, 2017 - cyberleninka.ru
В работе рассматриваются актуальные вопросы современной математической теории
динамического хаоса и ее приложений. В настоящее время принято считать, что в …
динамического хаоса и ее приложений. В настоящее время принято считать, что в …
[HTML][HTML] Persistent strange attractors in 3D polymatrix replicators
T Peixe, A Rodrigues - Physica D: Nonlinear Phenomena, 2022 - Elsevier
We introduce a one-parameter family of polymatrix replicators defined in a three-
dimensional cube and study its bifurcations. For a given interval of parameters, each …
dimensional cube and study its bifurcations. For a given interval of parameters, each …
[PS][PS] About the unfolding of a Hopf-zero singularity
F Dumortier, S Ibánez, H Kokubu… - Discrete Contin. Dyn …, 2013 - zeus.maia.ub.es
About the unfolding of a Hopf-zero singularity Page 1 About the unfolding of a Hopf-zero
singularity Freddy Dumortier Universiteit Hasselt Campus Diepenbeek Agoralaan-Gebouw D …
singularity Freddy Dumortier Universiteit Hasselt Campus Diepenbeek Agoralaan-Gebouw D …
Routes to chaos in the Hopf-saddle-node bifurcation for fixed points of 3D-diffeomorphisms
Dynamical phenomena are studied near a Hopf-saddle-node bifurcation of fixed points of
3D-diffeomorphisms. The interest lies in the neighbourhood of weak resonances of the …
3D-diffeomorphisms. The interest lies in the neighbourhood of weak resonances of the …
Coupling leads to chaos
F Drubi, S Ibáñez, JÁ Rodríguez - Journal of Differential Equations, 2007 - Elsevier
The main goal of this paper is to prove analytically the existence of strange attractors in a
family of vector fields consisting of two Brusselators linearly coupled by diffusion. We will …
family of vector fields consisting of two Brusselators linearly coupled by diffusion. We will …