[HTML][HTML] Understanding melt pool characteristics in laser powder bed fusion: An overview of single-and multi-track melt pools for process optimization

J Wang, R Zhu, Y Liu, L Zhang - Advanced Powder Materials, 2023 - Elsevier
Laser powder bed fusion (LPBF) has made significant progress in producing solid and
porous metal parts with complex shapes and geometries. However, LPBF produced parts …

Defects and anomalies in powder bed fusion metal additive manufacturing

A Mostafaei, C Zhao, Y He, SR Ghiaasiaan… - Current Opinion in Solid …, 2022 - Elsevier
Metal additive manufacturing is a disruptive technology that is revolutionizing the
manufacturing industry. Despite its unrivaled capability for directly fabricating metal parts …

Additive manufacturing of metallic lattice structures: Unconstrained design, accurate fabrication, fascinated performances, and challenges

LY Chen, SX Liang, Y Liu, LC Zhang - Materials Science and Engineering …, 2021 - Elsevier
Lattice structures, which are also known as architected cellular structures, have been
applied in various industrial sectors, owing to their fascinated performances, such as low …

[HTML][HTML] Additively manufactured metallic biomaterials

E Davoodi, H Montazerian, AS Mirhakimi… - Bioactive materials, 2022 - Elsevier
Metal additive manufacturing (AM) has led to an evolution in the design and fabrication of
hard tissue substitutes, enabling personalized implants to address each patient's specific …

A review on biomedical titanium alloys: recent progress and prospect

LC Zhang, LY Chen - Advanced engineering materials, 2019 - Wiley Online Library
Compared with stainless steel and Co–Cr‐based alloys, Ti and its alloys are widely used as
biomedical implants due to many fascinating properties, such as superior mechanical …

Additive manufacturing of functionally graded materials: A review

C Zhang, F Chen, Z Huang, M Jia, G Chen, Y Ye… - Materials Science and …, 2019 - Elsevier
Functionally graded materials (FGMs) represent a class of novel materials in which
compositions/constituents and/or microstructures gradually change along single or multiple …

[HTML][HTML] Design of titanium alloys by additive manufacturing: A critical review

T Zhang, CT Liu - Advanced Powder Materials, 2022 - Elsevier
Additive manufacturing (AM) is an innovative technology that creates objects with a complex
geometry layer-by-layer, and it has rapidly prospered in manufacturing metallic parts for …

[HTML][HTML] Towards load-bearing biomedical titanium-based alloys: From essential requirements to future developments

YW Cui, L Wang, LC Zhang - Progress in Materials Science, 2024 - Elsevier
The use of biomedical metallic materials in research and clinical applications has been an
important focus and a significant area of interest, primarily owing to their role in enhancing …

[HTML][HTML] Additive manufacturing processes: Selective laser melting, electron beam melting and binder jetting—Selection guidelines

P Konda Gokuldoss, S Kolla, J Eckert - materials, 2017 - mdpi.com
Additive manufacturing (AM), also known as 3D printing or rapid prototyping, is gaining
increasing attention due to its ability to produce parts with added functionality and increased …

Additive manufacturing of titanium alloys by electron beam melting: a review

LC Zhang, Y Liu, S Li, Y Hao - Advanced Engineering Materials, 2018 - Wiley Online Library
Electron beam melting (EBM), as one of metal additive manufacturing technologies, is
considered to be an innovative industrial production technology. Based on the layer‐wise …