Robust fitting of mixtures using the trimmed likelihood estimator

N Neykov, P Filzmoser, R Dimova… - Computational Statistics & …, 2007 - Elsevier
The maximum likelihood estimator (MLE) has commonly been used to estimate the unknown
parameters in a finite mixture of distributions. However, the MLE can be very sensitive to …

A method for determining neural connectivity and inferring the underlying network dynamics using extracellular spike recordings

VA Makarov, F Panetsos, O de Feo - Journal of Neuroscience Methods, 2005 - Elsevier
In the present paper we propose a novel method for the identification and modeling of
neural networks using extracellular spike recordings. We create a deterministic model of the …

A robust real-time flood forecasting method based on error estimation for reservoirs

D Shen, W Bao, P Ni - AQUA—Water Infrastructure, Ecosystems …, 2022 - iwaponline.com
The observed discharge, an important input for flood forecasting systems, can significantly
affect the accuracy of forecasting results. Since the reservoir inflow is not measured directly …

Lesions detection on 3D brain MRI using trimmmed likelihood estimator and probabilistic atlas

S Bricq, C Collet, JP Armspach - 2008 5th IEEE International …, 2008 - ieeexplore.ieee.org
this paper, we present a new automatic robust algorithm to segment multimodal brain MR
images with Multiple Sclerosis (MS) lesions. The method performs tissue classification using …

Generalized d-fullness Technique for Breakdown Point Study of the Trimmed Likelihood Estimator with Application

RB Dimova, NM Neykov - Theory and applications of recent robust …, 2004 - Springer
Generalized d-fullness Technique for Breakdown Point Study of the Trimmed Likelihood
Estimator with Application Page 1 Statistics for Industry and Technology, 83-91 Đ 2004 …

Robust estimation with discrete explanatory variables

P Čížek - Compstat: Proceedings in Computational Statistics, 2002 - Springer
The least squares estimator is quite sensitive to data contamination and model
misspecification. This sensitivity is addressed by the theory of robust statistics which builds …

Asymptotics of least trimmed squares regression

P Cizek - 2004 - papers.ssrn.com
High breakdown-point regression estimators protect against large errors both in explanatory
and dependent variables. The least trimmed squares (LTS) estimator is one of frequently …

[图书][B] Mixture of GLMs and the trimmed likelihood methodology

N Neykov, P Filzmoser, R Dimova, P Neytchev - 2004 - iris.unimore.it
The Maximum Likelihood Estimator (MLE) has been widely used to estimate the unknown
parameters in the finite mixture of Generalized Linear Models (GLMs). However, the MLE …

[PDF][PDF] AN EFFICIENT AND HIGH BREAKDOWN ESTIMATION PROCEDURE FOR NONLINEAR REGRESSION MODELS.

DM Khan, S Ihtesham, A Ali, U Khalil… - Pakistan Journal of …, 2017 - researchgate.net
In regression analysis least square (LS) estimator fails because of its sensitivity to unusual
observations present in the data. Robust estimation provides alternative estimates which are …

[PDF][PDF] Segmentation d'images IRM anatomiques par inférence bayésienne multimodale et détection de lésions

S Bricq - 2008 - publication-theses.unistra.fr
L'imagerie médicale, en constante évolution ces dernieres années, fournit un nombre
croissant de données. Ce volume important de données doit ensuite être analysé. Les …