Modern Koopman theory for dynamical systems
The field of dynamical systems is being transformed by the mathematical tools and
algorithms emerging from modern computing and data science. First-principles derivations …
algorithms emerging from modern computing and data science. First-principles derivations …
Machine learning with data assimilation and uncertainty quantification for dynamical systems: a review
Data assimilation (DA) and uncertainty quantification (UQ) are extensively used in analysing
and reducing error propagation in high-dimensional spatial-temporal dynamics. Typical …
and reducing error propagation in high-dimensional spatial-temporal dynamics. Typical …
Ensemble-SINDy: Robust sparse model discovery in the low-data, high-noise limit, with active learning and control
Sparse model identification enables the discovery of nonlinear dynamical systems purely
from data; however, this approach is sensitive to noise, especially in the low-data limit. In this …
from data; however, this approach is sensitive to noise, especially in the low-data limit. In this …
[PDF][PDF] Integrating physics-based modeling with machine learning: A survey
There is a growing consensus that solutions to complex science and engineering problems
require novel methodologies that are able to integrate traditional physics-based modeling …
require novel methodologies that are able to integrate traditional physics-based modeling …
Behavioral systems theory in data-driven analysis, signal processing, and control
I Markovsky, F Dörfler - Annual Reviews in Control, 2021 - Elsevier
The behavioral approach to systems theory, put forward 40 years ago by Jan C. Willems,
takes a representation-free perspective of a dynamical system as a set of trajectories. Till …
takes a representation-free perspective of a dynamical system as a set of trajectories. Till …
Modal analysis of fluid flows: Applications and outlook
THE field of fluid mechanics involves a range of rich and vibrant problems with complex
dynamics stemming from instabilities, nonlinearities, and turbulence. The analysis of these …
dynamics stemming from instabilities, nonlinearities, and turbulence. The analysis of these …
PySINDy: A comprehensive Python package for robust sparse system identification
Automated data-driven modeling, the process of directly discovering the governing
equations of a system from data, is increasingly being used across the scientific community …
equations of a system from data, is increasingly being used across the scientific community …
Physics-informed learning of governing equations from scarce data
Harnessing data to discover the underlying governing laws or equations that describe the
behavior of complex physical systems can significantly advance our modeling, simulation …
behavior of complex physical systems can significantly advance our modeling, simulation …
KAN-ODEs: Kolmogorov–Arnold network ordinary differential equations for learning dynamical systems and hidden physics
Abstract Kolmogorov–Arnold networks (KANs) as an alternative to multi-layer perceptrons
(MLPs) are a recent development demonstrating strong potential for data-driven modeling …
(MLPs) are a recent development demonstrating strong potential for data-driven modeling …
Data-driven discovery of coordinates and governing equations
The discovery of governing equations from scientific data has the potential to transform data-
rich fields that lack well-characterized quantitative descriptions. Advances in sparse …
rich fields that lack well-characterized quantitative descriptions. Advances in sparse …