Long-range interacting quantum systems
In this review recent investigations are summarized of many-body quantum systems with
long-range interactions, which are currently realized in Rydberg atom arrays, dipolar …
long-range interactions, which are currently realized in Rydberg atom arrays, dipolar …
Trapped-ion quantum computing: Progress and challenges
CD Bruzewicz, J Chiaverini, R McConnell… - Applied Physics …, 2019 - pubs.aip.org
Trapped ions are among the most promising systems for practical quantum computing (QC).
The basic requirements for universal QC have all been demonstrated with ions, and …
The basic requirements for universal QC have all been demonstrated with ions, and …
Entanglement-assisted quantum networks: Mechanics, enabling technologies, challenges, and research directions
Over the past few decades, significant progress has been made in quantum information
technology, from theoretical studies to experimental demonstrations. Revolutionary quantum …
technology, from theoretical studies to experimental demonstrations. Revolutionary quantum …
Quantum decoherence
M Schlosshauer - Physics Reports, 2019 - Elsevier
Quantum decoherence plays a pivotal role in the dynamical description of the quantum-to-
classical transition and is the main impediment to the realization of devices for quantum …
classical transition and is the main impediment to the realization of devices for quantum …
Quantum chemistry calculations on a trapped-ion quantum simulator
Quantum-classical hybrid algorithms are emerging as promising candidates for near-term
practical applications of quantum information processors in a wide variety of fields ranging …
practical applications of quantum information processors in a wide variety of fields ranging …
[图书][B] The Jaynes–Cummings model and its descendants: modern research directions
J Larson, T Mavrogordatos - 2021 - iopscience.iop.org
The Jaynes–Cummings Model (JCM) has recently been receiving increased attention as
one of the simplest, yet intricately nonlinear, models of quantum physics. Emphasising the …
one of the simplest, yet intricately nonlinear, models of quantum physics. Emphasising the …
High-fidelity laser-free universal control of trapped ion qubits
Universal control of multiple qubits—the ability to entangle qubits and to perform arbitrary
individual qubit operations—is a fundamental resource for quantum computing, simulation …
individual qubit operations—is a fundamental resource for quantum computing, simulation …
Long-lived Bell states in an array of optical clock qubits
The generation of long-lived entanglement in optical atomic clocks is one of the main goals
of quantum metrology. Arrays of neutral atoms, where Rydberg-based interactions may …
of quantum metrology. Arrays of neutral atoms, where Rydberg-based interactions may …
Quantum metrology with nonclassical states of atomic ensembles
Quantum technologies exploit entanglement to revolutionize computing, measurements, and
communications. This has stimulated the research in different areas of physics to engineer …
communications. This has stimulated the research in different areas of physics to engineer …
Noisy intermediate-scale quantum computers
Quantum computers have made extraordinary progress over the past decade, and
significant milestones have been achieved along the path of pursuing universal fault-tolerant …
significant milestones have been achieved along the path of pursuing universal fault-tolerant …