The evolution of distributed systems for graph neural networks and their origin in graph processing and deep learning: A survey
Graph neural networks (GNNs) are an emerging research field. This specialized deep
neural network architecture is capable of processing graph structured data and bridges the …
neural network architecture is capable of processing graph structured data and bridges the …
Computing graph neural networks: A survey from algorithms to accelerators
Graph Neural Networks (GNNs) have exploded onto the machine learning scene in recent
years owing to their capability to model and learn from graph-structured data. Such an ability …
years owing to their capability to model and learn from graph-structured data. Such an ability …
Graph-less neural networks: Teaching old mlps new tricks via distillation
Graph Neural Networks (GNNs) are popular for graph machine learning and have shown
great results on wide node classification tasks. Yet, they are less popular for practical …
great results on wide node classification tasks. Yet, they are less popular for practical …
Dorylus: Affordable, scalable, and accurate {GNN} training with distributed {CPU} servers and serverless threads
A graph neural network (GNN) enables deep learning on structured graph data. There are
two major GNN training obstacles: 1) it relies on high-end servers with many GPUs which …
two major GNN training obstacles: 1) it relies on high-end servers with many GPUs which …
P3: Distributed deep graph learning at scale
Graph Neural Networks (GNNs) have gained significant attention in the recent past, and
become one of the fastest growing subareas in deep learning. While several new GNN …
become one of the fastest growing subareas in deep learning. While several new GNN …
Towards graph foundation models: A survey and beyond
Emerging as fundamental building blocks for diverse artificial intelligence applications,
foundation models have achieved notable success across natural language processing and …
foundation models have achieved notable success across natural language processing and …
ByteGNN: efficient graph neural network training at large scale
Graph neural networks (GNNs) have shown excellent performance in a wide range of
applications such as recommendation, risk control, and drug discovery. With the increase in …
applications such as recommendation, risk control, and drug discovery. With the increase in …
GNNLab: a factored system for sample-based GNN training over GPUs
We propose GNNLab, a sample-based GNN training system in a single machine multi-GPU
setup. GNNLab adopts a factored design for multiple GPUs, where each GPU is dedicated to …
setup. GNNLab adopts a factored design for multiple GPUs, where each GPU is dedicated to …
Sancus: staleness-aware communication-avoiding full-graph decentralized training in large-scale graph neural networks
Graph neural networks (GNNs) have emerged due to their success at modeling graph data.
Yet, it is challenging for GNNs to efficiently scale to large graphs. Thus, distributed GNNs …
Yet, it is challenging for GNNs to efficiently scale to large graphs. Thus, distributed GNNs …
Linkless link prediction via relational distillation
Abstract Graph Neural Networks (GNNs) have shown exceptional performance in the task of
link prediction. Despite their effectiveness, the high latency brought by non-trivial …
link prediction. Despite their effectiveness, the high latency brought by non-trivial …