Federated learning in mobile edge networks: A comprehensive survey

WYB Lim, NC Luong, DT Hoang, Y Jiao… - … surveys & tutorials, 2020 - ieeexplore.ieee.org
In recent years, mobile devices are equipped with increasingly advanced sensing and
computing capabilities. Coupled with advancements in Deep Learning (DL), this opens up …

Convergence of edge computing and deep learning: A comprehensive survey

X Wang, Y Han, VCM Leung, D Niyato… - … Surveys & Tutorials, 2020 - ieeexplore.ieee.org
Ubiquitous sensors and smart devices from factories and communities are generating
massive amounts of data, and ever-increasing computing power is driving the core of …

A survey on federated learning

C Zhang, Y Xie, H Bai, B Yu, W Li, Y Gao - Knowledge-Based Systems, 2021 - Elsevier
Federated learning is a set-up in which multiple clients collaborate to solve machine
learning problems, which is under the coordination of a central aggregator. This setting also …

A survey on federated learning: The journey from centralized to distributed on-site learning and beyond

S AbdulRahman, H Tout… - IEEE Internet of …, 2020 - ieeexplore.ieee.org
Driven by privacy concerns and the visions of deep learning, the last four years have
witnessed a paradigm shift in the applicability mechanism of machine learning (ML). An …

Edge intelligence: The confluence of edge computing and artificial intelligence

S Deng, H Zhao, W Fang, J Yin… - IEEE Internet of …, 2020 - ieeexplore.ieee.org
Along with the rapid developments in communication technologies and the surge in the use
of mobile devices, a brand-new computation paradigm, edge computing, is surging in …

A survey on federated learning systems: Vision, hype and reality for data privacy and protection

Q Li, Z Wen, Z Wu, S Hu, N Wang, Y Li… - IEEE Transactions on …, 2021 - ieeexplore.ieee.org
As data privacy increasingly becomes a critical societal concern, federated learning has
been a hot research topic in enabling the collaborative training of machine learning models …

Edge intelligence: Paving the last mile of artificial intelligence with edge computing

Z Zhou, X Chen, E Li, L Zeng, K Luo… - Proceedings of the …, 2019 - ieeexplore.ieee.org
With the breakthroughs in deep learning, the recent years have witnessed a booming of
artificial intelligence (AI) applications and services, spanning from personal assistant to …

Federated machine learning: Concept and applications

Q Yang, Y Liu, T Chen, Y Tong - ACM Transactions on Intelligent …, 2019 - dl.acm.org
Today's artificial intelligence still faces two major challenges. One is that, in most industries,
data exists in the form of isolated islands. The other is the strengthening of data privacy and …

Blockchain for AI: Review and open research challenges

K Salah, MHU Rehman, N Nizamuddin… - IEEE …, 2019 - ieeexplore.ieee.org
Recently, artificial intelligence (AI) and blockchain have become two of the most trending
and disruptive technologies. Blockchain technology has the ability to automate payment in …

Threats, attacks and defenses to federated learning: issues, taxonomy and perspectives

P Liu, X Xu, W Wang - Cybersecurity, 2022 - Springer
Abstract Empirical attacks on Federated Learning (FL) systems indicate that FL is fraught
with numerous attack surfaces throughout the FL execution. These attacks can not only …