Heterogeneous federated learning: State-of-the-art and research challenges
Federated learning (FL) has drawn increasing attention owing to its potential use in large-
scale industrial applications. Existing FL works mainly focus on model homogeneous …
scale industrial applications. Existing FL works mainly focus on model homogeneous …
Communication-efficient distributed deep learning: A comprehensive survey
Distributed deep learning (DL) has become prevalent in recent years to reduce training time
by leveraging multiple computing devices (eg, GPUs/TPUs) due to larger models and …
by leveraging multiple computing devices (eg, GPUs/TPUs) due to larger models and …
FedFed: Feature distillation against data heterogeneity in federated learning
Federated learning (FL) typically faces data heterogeneity, ie, distribution shifting among
clients. Sharing clients' information has shown great potentiality in mitigating data …
clients. Sharing clients' information has shown great potentiality in mitigating data …
Heterogeneous forgetting compensation for class-incremental learning
Class-incremental learning (CIL) has achieved remarkable successes in learning new
classes consecutively while overcoming catastrophic forgetting on old categories. However …
classes consecutively while overcoming catastrophic forgetting on old categories. However …
Gossipfl: A decentralized federated learning framework with sparsified and adaptive communication
Recently, federated learning (FL) techniques have enabled multiple users to train machine
learning models collaboratively without data sharing. However, existing FL algorithms suffer …
learning models collaboratively without data sharing. However, existing FL algorithms suffer …
Recent advances on federated learning: A systematic survey
B Liu, N Lv, Y Guo, Y Li - Neurocomputing, 2024 - Elsevier
Federated learning has emerged as an effective paradigm to achieve privacy-preserving
collaborative learning among different parties. Compared to traditional centralized learning …
collaborative learning among different parties. Compared to traditional centralized learning …
Federated domain generalization: A survey
Machine learning typically relies on the assumption that training and testing distributions are
identical and that data is centrally stored for training and testing. However, in real-world …
identical and that data is centrally stored for training and testing. However, in real-world …
Out-of-distribution detection learning with unreliable out-of-distribution sources
Abstract Out-of-distribution (OOD) detection discerns OOD data where the predictor cannot
make valid predictions as in-distribution (ID) data, thereby increasing the reliability of open …
make valid predictions as in-distribution (ID) data, thereby increasing the reliability of open …
Hard sample matters a lot in zero-shot quantization
H Li, X Wu, F Lv, D Liao, TH Li… - Proceedings of the …, 2023 - openaccess.thecvf.com
Zero-shot quantization (ZSQ) is promising for compressing and accelerating deep neural
networks when the data for training full-precision models are inaccessible. In ZSQ, network …
networks when the data for training full-precision models are inaccessible. In ZSQ, network …
A survey of what to share in federated learning: Perspectives on model utility, privacy leakage, and communication efficiency
Federated learning (FL) has emerged as a secure paradigm for collaborative training among
clients. Without data centralization, FL allows clients to share local information in a privacy …
clients. Without data centralization, FL allows clients to share local information in a privacy …