Nonconvex optimization meets low-rank matrix factorization: An overview

Y Chi, YM Lu, Y Chen - IEEE Transactions on Signal …, 2019 - ieeexplore.ieee.org
Substantial progress has been made recently on developing provably accurate and efficient
algorithms for low-rank matrix factorization via nonconvex optimization. While conventional …

An overview of low-rank matrix recovery from incomplete observations

MA Davenport, J Romberg - IEEE Journal of Selected Topics in …, 2016 - ieeexplore.ieee.org
Low-rank matrices play a fundamental role in modeling and computational methods for
signal processing and machine learning. In many applications where low-rank matrices …

Quip: 2-bit quantization of large language models with guarantees

J Chee, Y Cai, V Kuleshov… - Advances in Neural …, 2024 - proceedings.neurips.cc
This work studies post-training parameter quantization in large language models (LLMs).
We introduce quantization with incoherence processing (QuIP), a new method based on the …

Exploiting shared representations for personalized federated learning

L Collins, H Hassani, A Mokhtari… - … on machine learning, 2021 - proceedings.mlr.press
Deep neural networks have shown the ability to extract universal feature representations
from data such as images and text that have been useful for a variety of learning tasks …

An efficient framework for clustered federated learning

A Ghosh, J Chung, D Yin… - Advances in Neural …, 2020 - proceedings.neurips.cc
We address the problem of Federated Learning (FL) where users are distributed and
partitioned into clusters. This setup captures settings where different groups of users have …

A survey of optimization methods from a machine learning perspective

S Sun, Z Cao, H Zhu, J Zhao - IEEE transactions on cybernetics, 2019 - ieeexplore.ieee.org
Machine learning develops rapidly, which has made many theoretical breakthroughs and is
widely applied in various fields. Optimization, as an important part of machine learning, has …

Adversarial attacks and defences: A survey

A Chakraborty, M Alam, V Dey… - arXiv preprint arXiv …, 2018 - arxiv.org
Deep learning has emerged as a strong and efficient framework that can be applied to a
broad spectrum of complex learning problems which were difficult to solve using the …

A latent factor analysis-based approach to online sparse streaming feature selection

D Wu, Y He, X Luo, MC Zhou - IEEE Transactions on Systems …, 2021 - ieeexplore.ieee.org
Online streaming feature selection (OSFS) has attracted extensive attention during the past
decades. Current approaches commonly assume that the feature space of fixed data …

Spectral methods for data science: A statistical perspective

Y Chen, Y Chi, J Fan, C Ma - Foundations and Trends® in …, 2021 - nowpublishers.com
Spectral methods have emerged as a simple yet surprisingly effective approach for
extracting information from massive, noisy and incomplete data. In a nutshell, spectral …

[图书][B] Recommender systems

CC Aggarwal - 2016 - Springer
“Nature shows us only the tail of the lion. But I do not doubt that the lion belongs to it even
though he cannot at once reveal himself because of his enormous size.”–Albert Einstein The …