Lattice points in large regions and related arithmetic functions: recent developments in a very classic topic

A Ivic, E Krätzel, M Kühleitner, WG Nowak - arXiv preprint math/0410522, 2004 - arxiv.org
This is a survey article on the theory of lattice points in large planar domains and bodies of
dimensions 3 and higher, with an emphasis on recent developments and new methods …

[图书][B] Analytische Funktionen in der Zahlentheorie

E Krätzel - 2013 - books.google.com
Im Mittelpunkt des Buches steht die Behandlung von Funktionalgleichungen analytischer
Funktionen, die für die Anwendungen in der Zahlentheorie von Interesse sind. Ausgehend …

Multigrid convergent principal curvature estimators in digital geometry

D Coeurjolly, JO Lachaud, J Levallois - Computer Vision and Image …, 2014 - Elsevier
In many geometry processing applications, the estimation of differential geometric quantities
such as curvature or normal vector field is an essential step. In this paper, we investigate a …

L2 to Lp bounds for spectral projectors on the Euclidean two-dimensional torus

C Demeter, P Germain - Proceedings of the Edinburgh Mathematical …, 2024 - cambridge.org
We consider spectral projectors associated to the Euclidean Laplacian on the two-
dimensional torus, in the case where the spectral window is narrow. Bounds for their L2 to …

Robust and convergent curvature and normal estimators with digital integral invariants

JO Lachaud, D Coeurjolly, J Levallois - Modern Approaches to Discrete …, 2017 - Springer
We present, in details, a generic tool to estimate differential geometric quantities on digital
shapes, which are subsets of ℤ d Z^ d. This tool, called digital integral invariant, simply …

Uniform Resolvent Estimates on the Torus

J Hickman - Mathematics Research Reports, 2020 - numdam.org
Uniform Lp Resolvent Estimates on the Torus Page 1 Mr r Mathematics esearch eports r r
Jonathan Hickman Uniform Lp Resolvent Estimates on the Torus Volume 1 (2020), p. 31-45 …

A combinatorial approach to orthogonal exponentials

A Iosevich, M Rudnev - International Mathematics Research …, 2003 - academic.oup.com
We prove that a symmetric strictly convex set with a smooth boundary in ℝ d can possess no
more than finitely many orthogonal exponentials, unless d= 1 mod (4). In such case, the …

[PDF][PDF] Lattice points in rational ellipsoids

F Chamizo, E Cristóbal, A Ubis - Journal of mathematical analysis and …, 2009 - core.ac.uk
Lattice points in rational ellipsoids Page 1 J. Math. Anal. Appl. 350 (2009) 283–289 Contents
lists available at ScienceDirect Journal of Mathematical Analysis and Applications …

Distance measures for well-distributed sets

A Iosevich, M Rudnev - Discrete & Computational Geometry, 2007 - Springer
In this paper we investigate the Erdos/Falconer distance conjecture for a natural class of sets
statistically, though not necessarily arithmetically, similar to a lattice. We prove a good upper …

[PDF][PDF] Mean square discrepancy bounds for the number of lattice points in large convex bodies

A Iosevich, E Sawyer, A Seeger - arXiv preprint math/0205127, 2002 - arxiv.org
arXiv:math/0205127v1 [math.CA] 12 May 2002 Page 1 arXiv:math/0205127v1 [math.CA] 12
May 2002 MEAN SQUARE DISCREPANCY BOUNDS FOR THE NUMBER OF LATTICE …